Skip to main content

Upcoming Roman Space Telescope could discover 100,000 new exoplanets

Illustration of a planet transiting its host star.
Illustration of a planet transiting its host star. NASA's Jet Propulsion Laboratory

In the last decade, telescopes have discovered thousands of planets outside our solar system, called exoplanets, giving us a tantalizing glimpse into possible worlds beyond our own. But the next generation of telescopes will be able to discover even more, like the upcoming NASA Nancy Grace Roman Space Telescope which could discover tens of thousands of exoplanets.

To find new planet candidates, Roman will use a method called microlensing. This works by looking at a large number of stars and watching for a time when one star passes in front of another from our perspective on Earth. When this happens, the gravity of the foreground star bends the light being given off by the background star, resulting in a small fluctuation in brightness. This allows scientists to learn about the foreground star, including whether it might host planets.

The challenge with this method is that it is extremely rare for two stars to line up just so. In order to find two stars lining up, the telescope has to observe millions of stars to increase the chances of seeing one pass in front of another.

“Microlensing events are rare and occur quickly, so you need to look at a lot of stars repeatedly and precisely measure brightness changes to detect them,”  astrophysicist Benjamin Montet, a Scientia Lecturer at the University of New South Wales in Sydney, said in a statement.

This is handy in several ways, as such observations also enable a different type of exoplanet detection using the transit method. “Those are exactly the same things you need to do to find transiting planets, so by creating a robust microlensing survey, Roman will produce a nice transit survey as well,” Montet said.

The transit method looks for dips in the brightness of stars caused when a planet passes between the star and us. This provides an additional method for discovering even more exoplanets from the same data. This method is best for finding planets close to their stars, while microlensing is best for finding planets far from their stars.

“The fact that we’ll be able to detect thousands of transiting planets just by looking at microlensing data that’s already been taken is exciting,” said study co-author Jennifer Yee, an astrophysicist at the Center for Astrophysics, Harvard & Smithsonian in Cambridge, Massachusetts. “It’s free science.”

A research paper from Montet estimated that using microlensing, Roman could detect as many as 100,000 planets, and it may discover even more using the transit method as well. The telescope is scheduled to launch in the mid-2020s.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Spot the space station with this new NASA app
The International Space Station.

The International Space Station (ISS) orbits Earth 16 times a day, which means that at some point it’s likely to pass over your neighborhood.

Despite being 250 miles above our heads, it’s actually easy to spot the ISS thanks to the reflection that occurs when the sun’s rays bounce off its solar arrays. You just need to know when to look up.

Read more
James Webb sees evidence of an ocean-covered ‘Hycean’ exoplanet
This illustration shows what exoplanet K2-18 b could look like based on science data. K2-18 b, an exoplanet 8.6 times as massive as Earth, orbits the cool dwarf star K2-18 in the habitable zone and lies 120 light years from Earth.

The James Webb Space Telescope has once again peered into the atmosphere of an exoplanet, and this time it has identified indications that the planet could be covered in oceans. The planet K2-18 b is just 120 light-years away from Earth in the constellation of Leo and is a type of planet called a sub-Neptune which is unlike any planet in our solar system.

Researchers used Webb to investigate K2-18 b, which is more than eight times the mass of Earth and orbits a small, cool dwarf star. It is located within the habitable zone of the star, where it is possible for water to exist on the planet's surface, and the data suggests that this could be an ocean world.

Read more
Scientists explain cosmic ‘question mark’ spotted by Webb space telescope
The shape of a question mark captured by the James Webb Space Telescope.

Considering the myriad of unknowns that still exist for scientists exploring the vastness of the universe, the recent discovery in deep space of what seems to be a giant question mark feels highly appropriate.

Captured by the powerful James Webb Space Telescope, the bright, distinctive object clearly bears the shape of a question mark, leaving some stargazers wondering if the cosmos is teasing us, or perhaps motivating us to keep on searching the depths of space for the secrets that it may reveal.

Read more