Skip to main content

See the 42 biggest asteroids in our solar system in stunning detail

Far out on the border of the outer solar system between the orbits of Mars and Jupiter lies the asteroid belt, where hundreds of thousands of small objects orbit the sun. Most of these objects are small rocky asteroids, but some are known to be 60 miles or larger across. Now, the European Southern Observatory (ESO) has released images of 42 of the largest asteroids in the belt, showing their variety of sizes and shapes.

The asteroids were imaged using ESO’s Very Large Telescope, marking the most detailed observation of many of these bodies to date. They include well-known bodies like the dwarf planet Ceres, the metal asteroid Psyche, and asteroid Vesta, which was visited by NASA’s Dawn spacecraft in 2011. But they also include lesser-known oddities like the bone-shaped Kleopatra or the flattened, elongated Sylvia.

Poster showing 42 of the largest objects in the asteroid belt, located between Mars and Jupiter (orbits not to scale).
This poster shows 42 of the largest objects in the asteroid belt, located between Mars and Jupiter (orbits not to scale). ESO/M. Kornmesser/Vernazza et al./MISTRAL algorithm (ONERA/CNRS)

“Only three large main belt asteroids, Ceres, Vesta, and Lutetia, have been imaged with a high level of detail so far, as they were visited by the space missions Dawn and Rosetta of NASA and the European Space Agency, respectively,” said lead author of the study, Pierre Vernazza of the Laboratoire d’Astrophysique de Marseille in France, in a statement. “Our ESO observations have provided sharp images for many more targets, 42 in total.”

Ceres and Vesta, the two largest objects in the asteroid belt between Mars and Jupiter, approximately 940 and 520 kilometers in diameter.
These images have been captured with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope as part of a program that surveyed 42 of the largest asteroids in our Solar System. They show Ceres and Vesta, the two largest objects in the asteroid belt between Mars and Jupiter, approximately 940 and 520 kilometers in diameter. ESO/Vernazza et al./MISTRAL algorithm (ONERA/CNRS)

By looking at the shapes of the asteroids, which range in size from Ceres at 580 miles across to Urania and Ausonia at 56 miles across, the researchers were able to classify them into two groups: The nearly perfectly spherical and the elongated. They also found significant variability in the density of the asteroids, which suggests that they are not all composed of the same material.

This means that the asteroids may have been formed in different locations and migrated toward the asteroid belt over time. Some of the bone-shaped asteroids may even have formed as far away as beyond the orbit of Neptune before ending up in the asteroid belt.

The researchers now want to continue studying the asteroids in the belt using the upcoming Extremely Large Telescope (ELT). This more powerful telescope could also enable them to see even more distant objects in our solar system, like those in the remote Kuiper Belt beyond Neptune.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Solar Orbiter and Parker Solar Probe work together on a puzzle about our sun
Artist's impression of Solar Orbiter and Parker Solar Probe.

One of the biggest puzzles about our sun is a strange one: you might think that it would be hottest right at the surface, but in fact, that isn't the case. The corona, or the sun's outer atmosphere, is hundreds of times hotter than its surface. It's still not clear exactly what that should be the case, so it's an issue that solar missions are keen to research.

Artist's impression of Solar Orbiter and Parker Solar Probe. Solar Orbiter: ESA/ATG medialab; Parker Solar Probe: NASA/Johns Hopkins APL

Read more
James Webb telescope captures the gorgeous Ring Nebula in stunning detail
JWST/NIRcam composite image of the Ring Nebula. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very centre. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4000 years ago. Technical details: The image was obtained with JWST's NIRCam instrument on August 4, 2022. Images in three different filters were combined to create this composite image: F212N (blue); F300M (green); and F335M (red).

A new image from the James Webb Space Telescope shows the stunning and distinctive Ring Nebula -- a gorgeous structure of dust and gas located in the constellation of Lyra. This nebula is a favorite among sky watchers as it faces toward Earth so we can see its beautiful structure, and because it is visible throughout the summer from the Northern Hemisphere. It is different from the Southern Ring nebula, which Webb has also imaged, but both are a type of object called a planetary nebula.

Located just 2,600 light-years away, the Ring Nebula is a structure of dust and gas that was first observed in the 1770s, when it was thought to be something like a planet. With advances in technology, astronomers realized it was not a planet, but rather a cloud of dust and gas, and thanks to highly detailed observations by space telescopes like Hubble and Webb, scientists have been able to see more of its complex structure. The nebula isn't a simple sphere or blob, but is rather a central, football-shaped structure surrounded by rings of different material.

Read more
See how James Webb instruments work together to create stunning views of space
The irregular galaxy NGC 6822.

A series of new images from the James Webb Space Telescope shows the dusty, irregular galaxy NGC 6822 -- and the different views captured by various Webb instruments.

Located relatively close by at 1.5 million light-years from Earth, this galaxy is notable for its low metallicity. Confusingly, when astronomers say metallicity they do not mean the amount of metals present in a galaxy, but rather the amount of all heavy elements -- i.e., everything which isn't hydrogen or helium. This factor is important because the very earliest galaxies in the universe were made up almost entirely of hydrogen and helium, meaning they had low metallicity, and the heavier elements were created over time in the heart of stars and were then distributed through the universe when some of those stars went supernova.

Read more