Skip to main content

See the 42 biggest asteroids in our solar system in stunning detail

Far out on the border of the outer solar system between the orbits of Mars and Jupiter lies the asteroid belt, where hundreds of thousands of small objects orbit the sun. Most of these objects are small rocky asteroids, but some are known to be 60 miles or larger across. Now, the European Southern Observatory (ESO) has released images of 42 of the largest asteroids in the belt, showing their variety of sizes and shapes.

The asteroids were imaged using ESO’s Very Large Telescope, marking the most detailed observation of many of these bodies to date. They include well-known bodies like the dwarf planet Ceres, the metal asteroid Psyche, and asteroid Vesta, which was visited by NASA’s Dawn spacecraft in 2011. But they also include lesser-known oddities like the bone-shaped Kleopatra or the flattened, elongated Sylvia.

Poster showing 42 of the largest objects in the asteroid belt, located between Mars and Jupiter (orbits not to scale).
This poster shows 42 of the largest objects in the asteroid belt, located between Mars and Jupiter (orbits not to scale). ESO/M. Kornmesser/Vernazza et al./MISTRAL algorithm (ONERA/CNRS)

“Only three large main belt asteroids, Ceres, Vesta, and Lutetia, have been imaged with a high level of detail so far, as they were visited by the space missions Dawn and Rosetta of NASA and the European Space Agency, respectively,” said lead author of the study, Pierre Vernazza of the Laboratoire d’Astrophysique de Marseille in France, in a statement. “Our ESO observations have provided sharp images for many more targets, 42 in total.”

Ceres and Vesta, the two largest objects in the asteroid belt between Mars and Jupiter, approximately 940 and 520 kilometers in diameter.
These images have been captured with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope as part of a program that surveyed 42 of the largest asteroids in our Solar System. They show Ceres and Vesta, the two largest objects in the asteroid belt between Mars and Jupiter, approximately 940 and 520 kilometers in diameter. ESO/Vernazza et al./MISTRAL algorithm (ONERA/CNRS)

By looking at the shapes of the asteroids, which range in size from Ceres at 580 miles across to Urania and Ausonia at 56 miles across, the researchers were able to classify them into two groups: The nearly perfectly spherical and the elongated. They also found significant variability in the density of the asteroids, which suggests that they are not all composed of the same material.

This means that the asteroids may have been formed in different locations and migrated toward the asteroid belt over time. Some of the bone-shaped asteroids may even have formed as far away as beyond the orbit of Neptune before ending up in the asteroid belt.

The researchers now want to continue studying the asteroids in the belt using the upcoming Extremely Large Telescope (ELT). This more powerful telescope could also enable them to see even more distant objects in our solar system, like those in the remote Kuiper Belt beyond Neptune.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA cracks open its first sample from an asteroid, foiling two sticky screws
NASA’s OSIRIS-REx curation engineer, Neftali Hernandez, attaches one of the tools developed to help remove two final fasteners that prohibited complete disassembly of the TAGSAM (Touch-and-Go Sample Acquisition Mechanism) head that holds the remainder of material collected from asteroid Bennu. Engineers on the team, based at NASA’s Johnson Space Center in Houston, developed new tools that freed the fasteners on Jan. 10.

NASA returned its first sample of an asteroid to Earth last year, landing a sample collected from asteroid Bennu in the Utah desert in September. Researchers were able to extract 70 grams of material from the canister that had been carried back to Earth by the OSIRIS-REx spacecraft, making this the largest asteroid sample ever brought to Earth. The scientists involved knew there was more material inside the mechanism, but getting at it proved difficult -- until now, as NASA has announced it has now managed to open up the troublesome mechanism.

You might think it would be an easy job to unscrew a canister and dump out the material inside, but extraction was a lengthy and technical process. That's because the focus was on preserving as much of the precious sample as possible, trying not to let any of the particles get lost. The issue was with two of the 25 fasteners that held the sample inside the collection mechanism.  The mechanism is kept inside a glove box to prevent any loss, and there were only certain tools available that worked with the glove box. So when the fasteners wouldn't open with the tools they had, the team couldn't just go at them with any other tool.

Read more
Stunning James Webb image shows the beating heart of our Milky Way
The full view of the NASA/ESA/CSA James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense centre. An estimated 500,000 stars shine in this image of the Sagittarius C (Sgr C) region, along with some as-yet unidentified features. A vast region of ionised hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionised hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionised region, covering about 25 light-years. A cluster of protostars – stars that are still forming and gaining mass – are producing outflows that glow like a bonfire at the base of the large infrared-dark cloud, indicating that they are emerging from the cloud’s protective cocoon and will soon join the ranks of the more mature stars around them. Smaller infrared-dark clouds dot the scene, appearing like holes in the starfield. Researchers say they have only begun to dig into the wealth of unprecedented high-resolution data that Webb has provided on this region, and many features bear detailed study. This includes the rose-coloured clouds on the right side of the image, which have never been seen in such detail.

A new image from the James Webb Space Telescope shows the heart of our galaxy, in a region close to the supermassive black hole at the center of the Milky Way, Sagittarius A*. The image shows a star-forming region where filaments of dust and gas are clumping together to give birth to new baby stars.

The image was captured using Webb's NIRCam instrument, a camera that looks in the near-infrared portion of the electromagnetic spectrum with shorter wavelengths shown in blue and cyan and longer wavelengths shown in yellow and red.

Read more
See the stunning first images taken by the dark matter-hunting Euclid telescope
The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars.

The European Space Agency (ESA) has released the first full-color images taken by Euclid, a space telescope that was launched earlier this year to probe the mysteries of dark matter and dark energy. Euclid will image a huge area of the sky to build up a 3D map of the universe, helping researchers to track the dark matter that is clustered around galaxies and the dark energy that counteracts gravity to push galaxies apart.

The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

Read more