Skip to main content

Wish a very happy 10th landing anniversary to Mars rover Curiosity

Today NASA’s Curiosity rover celebrates 10 years on Mars, and it’s still going strong since its landing on August 6, 2012. As the first of a new design of Martian rover along with Perseverance, Curiosity has not only provided illuminating scientific information about the history and geology of the planet but has also demonstrated a host of engineering concepts that have made rovers bigger and better than ever before.

NASA’s Curiosity Rover Turns 10: Here’s What It’s Learned (Mars News Report Aug. 5, 2022)

When you think of a Mars rover, many people are picturing something small, like the microwave-sized Sojourner which landed on Mars in 1997, or the golf cart sized Opportunity and Spirit rovers which landed in 2004. But Curiosity marked the beginning of much larger rovers, as it and Perseverance are car-sized and significantly heavier than their trailblazing brethren. This increase in size and mass means that newer rovers can carry far more complex scientific instruments, turning rovers from pint-sized explorers which could collect only basic data into mobile laboratories. That principle is where Curiosity got its technical mission name, Mars Science Laboratory.

A poster produced by NASA to celebrate the Curiosity Mars rover’s tenth anniversary on the Red Planet.
A poster produced by NASA to celebrate the Curiosity Mars rover’s 10th anniversary on the Red Planet. NASA/JPL-Caltech

A bigger and heavier rover faces a bigger challenge, though, in terms of how it can be landed on Mars. Previous generations of Mars rovers were covered in airbags and essentially dropped onto the surface where they would bounce around before coming to a stop, with air in the airbags protecting them from impacts. But Curiosity’s significant mass made airbags ineffective, so a new landing system was developed.

The sky crane system which delivered both Curiosity and Perseverance safely to the Martian surface works using a jetpack that fires thrusters to slow descent while the rover is lowered on a set of cables. Once the rover has touched down, the cables detach and the jetpack flies away to prevent any tangles between it and the rover. This system helps to place a rover in a specific and predictable location, unlike the unpredictable bouncing of airbags, and it can let down much heavier rovers safely.

Curiosity immediately captured the hearts of the public and has produced stunning images of the Martian landscape as well as beautiful images of clouds in addition to its work looking for signs of ancient life and measuring the martian atmosphere. Some of its most popular outreach projects have included enormous high-resolution panoramas and videos showing the Gale Crater, where it is exploring.

Mars is still a tough environment though, and Curiosity has had to face challenges like sharp rocks which have damaged its wheels. To mitigate this issue, the rover driving team is careful about how they use Curiosity to ensure that as little damage as possible is done to the hardware so it can continue working for as long as it can.

“As soon as you land on Mars, everything you do is based on the fact that there’s no one around to repair it for 100 million miles,” said Andy Mishkin, Curiosity’s acting project manager at NASA’s Jet Propulsion Laboratory in a statement. “It’s all about making intelligent use of what’s already on your rover.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Curiosity rover battles up a 23-degree slope in its exploration of Mars
Curiosity Rover

The Curiosity rover is slowly making its way up Mount Sharp, a 3-mile-tall mountain on Mars. Mountains are useful to study as their steep slopes can reveal layers of material laid down over time, like a geological time capsule. But just like heaving up a mountain is a challenge for humans, it can be tricky for rovers too. Curiosity recently took on a particularly steep and slippery slope, marking its most challenging climb to date.

How difficult terrain is for a rover to pass depends on a number of factors, including how steep it is, how slippery the sand is, and what obstacles such as boulders or sharp rocks are present. This ascent, which the rover tackled through May and June, had all of the above including a 23-degree incline. “If you’ve ever tried running up a sand dune on a beach – and that’s essentially what we were doing – you know it’s hard, but there were boulders in there as well,” said Amy Hale, a Curiosity rover driver at NASA’s Jet Propulsion Laboratory (JPL), in a statement.

Read more
Perseverance rover finds organic molecules in Mars’ Jezero Crater
mars 2020 perseverance rover

One of the biggest aims of Mars research right now is trying to figure out if life ever existed on Mars. Given how dry and inhospitable Mars is today, scientists are pretty certain that there's nothing living there currently. But millions of years ago, Mars could have looked a lot more like Earth, with plentiful surface water in rivers and lakes. Now, research focuses on using the instruments on rovers like the Perseverance and Curiosity rovers to try and look for evidence of ancient life on the planet.

Recently, researchers used data from Perseverance's SHERLOC instrument, a camera and spectrometer used to detect minerals and organic molecules, to confirm the discovery of a variety of organic molecules in Mars' Jezero Crater. Similar findings have been made by the Curiosity Rover in the Gale Crater, but these are some of the first indications of the finding in this other location.

Read more
See a postcard from Mars taken by the Curiosity rover
NASA’s Curiosity Mars rover used its black-and-white navigation cameras to capture panoramas of “Marker Band Valley” at two times of day on April 8. Color was added to a combination of both panoramas for an artistic interpretation of the scene.

Today, you can enjoy a stunning new view of Mars, thanks to a postcard from the Gale Crater taken by the Curiosity rover. The image combines two different views of the same area and is colorized to show off the undulating martian landscape in a region called the Marker Band Valley.

The image, shared by NASA's Jet Propulsion Laboratory (JPL), shows the back of the rover and views of the tire tracks it has left across the martian surface as it has driven. The view on the left side of the image was taken in the morning of April 8, at 9:20 a.m. local Mars time, while the image on the right side was taken on the same day but in the evening, at 3:40 p.m. local Mars time. The two images have been blended together to show how the landscape looks different throughout the day.

Read more