Skip to main content

Tiny dwarf planet Quaoar has a mysterious ring

The European Space Agency’s CHEOPS telescope usually searches for planets outside our solar system, but recently it made a discovery closer to home: a large ring around the dwarf planet Quaoar which has researchers intrigued.

An artist’s impression of the dwarf planet Quaoar and its ring. Quaoar’s moon Weywot is shown on the left. Quaoar’s ring was discovered through a series of observations that took place between 2018 to 2021. Using a collection of ground-based telescopes, and ESA’s space-based telescope Cheops, astronomers watched as Quaoar crossed in front of a succession of distant stars, briefly blocking out their light as it passed.
An artist’s impression of the dwarf planet Quaoar and its ring. Quaoar’s moon Weywot is shown on the left. Quaoar’s ring was discovered through a series of observations that took place between 2018 to 2021. Using a collection of ground-based telescopes, and ESA’s space-based telescope Cheops, astronomers watched as Quaoar crossed in front of a succession of distant stars, briefly blocking out their light as it passed. ESA; Acknowledgement: Work performed by ATG under contract for ESA

The ring was spotted around the dwarf planet Quaoar, located in the Kuiper belt around 44 times farther from the sun than the Earth is. The planet itself is small, at just 690 miles across, but the ring around it is much larger — at seven and a half times its radius.

Related Videos

Because of the planet’s small size and far distance from the sun, it is hard to observe even using a powerful space-based telescope like CHEOPS. To observe the dwarf planet, researchers had to wait until it passed in front of distant background stars and blocked out their light in events called occultations. But these events are rare and hard to predict.

“I was a little skeptical about the possibility to do this with CHEOPS,” said one of the CHEOPS researchers, Isabella Pagano, in a statement. “But we investigated the feasibility.”

It took several attempts, but the team was able to observe an occultation and were very pleased with the results. “The Cheops data are amazing for signal to noise,” Pagano said.

These results enabled them to see the dwarf planet and its ring. “When we put everything together, we saw drops in brightness that were not caused by Quaoar, but that pointed to the presence of material in a circular orbit around it. The moment we saw that we said, ‘Okay, we are seeing a ring around Quaoar,’” said lead researcher Bruno Morgado.

There’s something strange about this ring though. Quaoar has a small moon called Weywot, and astronomers would expect that the material in the ring would also coalesce into a moon. When the material gets close to a massive body like a planet, it is pulled apart by gravity once it passes a point called the Roche limit to form a ring. But Quaoar’s ring is well outside the Roche limit.

The team is puzzling over this finding, and theorizes that it could be due to the very cold temperatures of Quaoar which are stopping the particles in the ring from sticking together to form a moon. But for now, the exact reason remains a mystery.

The research is published in the journal Nature.

Editors' Recommendations

Hubble revisits an irregular dwarf galaxy bursting with young stars
The dwarf galaxy NGC 1705 featured in this image from the NASA/ESA Hubble Space Telescope lies in the southern constellation Pictor, approximately 17 million light-years from Earth. NGC 1705 is a cosmic oddball – it is small, irregularly shaped, and has recently undergone a spate of star formation known as a starburst.

This week's image from the Hubble Space Telescope shows the quirky dwarf galaxy NGC 1705, an unusually shaped small galaxy located 17 million light-years away. Stars have formed in this galaxy across its entire lifetime, but the galaxy went through a very intensive period of star formation, called a starburst, approximately 30 million years ago. Many of the stars born during this period are now located around the central core or within the huge central star cluster.

This particular dwarf galaxy is an irregular shape, but it is still a useful object of study. Dwarf galaxies are thought to be some of the oldest galaxies, so studying them can help us learn about the early universe. This one was observed in order to learn about young stars.

Read more
Largest ever group of lonely rogue planets discovered in Milky Way
This artist’s impression shows an example of a rogue planet with the Rho Ophiuchi cloud complex visible in the background. Rogue planets have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own.

Deep in the cold, dark emptiness of interstellar space, you can find some lonely planets roaming freely and not orbiting a star. Known as rogue planets, these objects are elusive and are rarely discovered due to being difficult to spot -- but a new study has found the largest collection of rogue planets to date, located in a region of the Milky Way called the Upper Scorpius OB stellar association.

Finding rogue planets is hard because, unlike stars, planets are dim and give off very little light, and these tiny points have to be picked out from a background of bright stars. But an international team was able to spot this group of rogue planets by using a combination of both new observations and archival data from a large number of sources including telescopes of the European Southern Observatory, the Canada-France-Hawaii Telescope, and the Subaru Telescope. In total, the data they used added up to 80,000 wide-field images taken over 20 years of observations.

Read more
A year lasts just 8 hours on tiny, hellish planet bombarded by radiation
Artist im­pres­sion of Plan­et GJ 367

Astronomers from the German Aerospace Center Institute of Planetary Research have discovered a terrifying planet: Smaller than Earth and so close to its star that it completes an orbit in just eight hours. Its host star, located relatively nearby at 31 light-years' distance, is a red dwarf which is smaller and cooler than our sun, but even so, the planet is so close that its surface temperature could reach up to 2,700 degrees Fahrenheit. And the planet is bombarded with radiation that is over 500 times stronger than the radiation on Earth.

The planet, called GJ 367 b, is smaller than most exoplanets discovered so far, which tend to be comparable in size to Jupiter. It has just half the mass of Earth but is slightly larger than Mars with a diameter of 5,500 miles. It was discovered using NASA's Transiting Exoplanet Survey Satellite (TESS), a space-based planet-hunter that detects planets using the transit method, in which it observes the light from distant stars to look for dips in brightness caused by a planet moving between the star and Earth.

Read more