Skip to main content

A year lasts just 8 hours on tiny, hellish planet bombarded by radiation

Astronomers from the German Aerospace Center Institute of Planetary Research have discovered a terrifying planet: Smaller than Earth and so close to its star that it completes an orbit in just eight hours. Its host star, located relatively nearby at 31 light-years’ distance, is a red dwarf which is smaller and cooler than our sun, but even so, the planet is so close that its surface temperature could reach up to 2,700 degrees Fahrenheit. And the planet is bombarded with radiation that is over 500 times stronger than the radiation on Earth.

Artist im­pres­sion of Plan­et GJ 367
SPP 1992 (Patricia Klein)

The planet, called GJ 367 b, is smaller than most exoplanets discovered so far, which tend to be comparable in size to Jupiter. It has just half the mass of Earth but is slightly larger than Mars with a diameter of 5,500 miles. It was discovered using NASA’s Transiting Exoplanet Survey Satellite (TESS), a space-based planet-hunter that detects planets using the transit method, in which it observes the light from distant stars to look for dips in brightness caused by a planet moving between the star and Earth.

After its discovery using TESS, GJ 367 b was further investigated using the European Southern Observatory’s 3.6m Telescope, a ground-based telescope that uses a different method to more precisely determine its radius and mass.

“From the precise determination of its radius and mass, GJ 367 b is classified as a rocky planet,” explained lead researcher Kristine Lam. “It seems to have similarities to Mercury. This places it among the sub-Earth-sized terrestrial planets and brings research one step forward in the search for a ‘second Earth’.”

However, despite its similarities to Earth, you wouldn’t want to move to GJ 367 b. Its surface temperature is so hot it could almost vaporize iron, and the researchers think that the planet may have lost its entire outer layer, called the outer mantle.

But studying the planet could help astronomers learn more about how planets and planetary systems form, which could help us understand more about the development of our own planet and solar system.

When it comes to planets orbiting this close to their stars, called ultra-short period (USP) planets, “We already know a few of these, but their origins are currently unknown,” said Lam. “By measuring the precise fundamental properties of the USP planet, we can get a glimpse of the system’s formation and evolution history.”

The research is published in the journal Science.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Here’s why scientists think life may have thrived on the ‘hell planet’ Venus
The planet Venus.

When you look at Venus today, it doesn’t seem like a very welcoming place. With surface temperatures hotter than an oven, atmospheric pressure equivalent to being 3,000 feet deep in the ocean, and no liquid water anywhere that we’ve seen, it seems like the opposite of a comfortable environment in which life could emerge.

But in the last decade, scientists have begun to wonder whether this “hell planet” could once have been habitable. Billions of years ago, Venus could have been a cooler, wetter place, with oceans not unlike our own here on Earth.

Read more
CHEOPS planet-hunter detects four rarely seen mini-Neptunes
Artist's impression of Cheops, ESA's Characterising Exoplanet Satellite, in orbit above Earth.

The European Space Agency (ESA)'s CHEOPS satellite has discovered four new exoplanets -- and they are a hard-to-detect type called a mini-Neptune. These planets are notable because they are the "missing link" between rocky Earth-sized planets and ice giants like Neptune. They are thought to be very common in our galaxy, but they are hard to spot because they are small and cool compared to the big, bright hot Jupiters which are most commonly detected by exoplanet-hunting telescopes.

Mini-Neptunes do orbit close to their stars, typically being found closer to their stars than Mercury is to the sun. However, hot Jupiters orbit even closer -- which gives them very high surface temperatures of over 1,000 degrees Celsius. Mini-Neptunes have relatively cooler surface temperatures of around 300 degrees Celsius.

Read more
Hubble observes weird star system with three off-kilter, planet-forming disks
This illustration is based on Hubble Space Telescope images of gas and dust discs encircling the young star TW Hydrae. We have an oblique view of three concentric rings of dust and gas. At the centre is the bright white glow of the central star. The reddish-coloured rings are inclined to each other and are therefore casting dark shadows across the outermost ring.

Planets form from large disks of dust and gas that collect around their host stars. Billions of years ago, our solar system would have looked like a single point of bright light coming from the sun, with a disk of matter swirling around it that eventually clumped into planets. To learn about how our solar system formed, it's helpful to look at other systems that are currently going through this process -- such as TW Hydrae, a system located 200 light-years away and turned face-on toward us, making it the perfect place to observe planetary formation.

But there's something odd about the TW Hydrae system. In 2017, astronomers first noticed a strange shadow that was visible on the disk of dust and gas surrounding the star. While such shadows are typically from a planet formed within the disk, in this case the shadow's shape and movement suggested it was actually from a second disk, located within the first disk and tilted at a different angle. Now, astronomers think they have spotted evidence of a third disk, with all three stacked up and creating a complex pattern of shadows.

Read more