Skip to main content

See the closest-ever image of comet NEOWISE captured by Hubble

The Hubble Space Telescope has captured the closest image taken so far of a recent visitor to our part of the solar system, comet NEOWISE. The image, captured on August 8, shows the comet as it zipped past our planet at 37 miles per second, or over 133,000 mph.

Comet NEOWISE was visible in the skies last month, even with the naked eye. It was notable for being the brightest comet in over 20 years, since the Hale-Bopp comet passed by in 1997.

It was named for the NASA mission which first spotted it, the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE), and became a popular target among amateur astronomers across the world. But if you missed seeing it while it was passing by this time, too bad — astronomers estimate it won’t be back in our region of the solar system for another 7,000 years.

NASA/ESA Hubble Space Telescope has captured the closest images yet of the sky’s latest visitor to make the headlines, comet C/2020 F3 NEOWISE
The NASA/ESA Hubble Space Telescope has captured the closest images yet of the sky’s latest visitor to make the headlines, comet C/2020 F3 NEOWISE, after it passed by the Sun. This color image of the comet was taken on 8 August 2020. The two structures appearing on the left and right sides of the comet’s center are jets of sublimating ice from beneath the surface of the nucleus, with the resulting dust and gas bring squeezed through at a high velocity. The jets emerge as cone-like structures, then are fanned out by the rotation of the comet’s nucleus. NASA, ESA, Q. Zhang (California Institute of Technology), A. Pagan (STScI)

Bright comets like NEOWISE are difficult to photograph as they tend to fall apart due to the immense heat generated as they approach the sun. NEOWISE, however, maintained its solid core of ice so Hubble was able to capture it. The core itself is too small to be photographed, at less than 3 miles across, but the telescope could see the cloud of dust and gas around this core which is more than 11,000 miles across.

The photograph isn’t just for fun, though. It may also teach us more about how comets react to their environments. “The Hubble photos may also help reveal the color of the comet’s dust and how that color changes as the comet moves away from the sun,” the Hubble scientists wrote in a statement. “This, in turn, may explain how solar heat affects the contents and structure of that dust and the comet’s coma. The ultimate goal here would be to determine the original properties of the dust. Researchers who used Hubble to observe the comet are currently delving further into the data to see what they’re able to find.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble celebrates its 33rd birthday with stunning nebula image
Astronomers are celebrating the NASA/ESA Hubble Space Telescope’s 33rd launch anniversary with an ethereal photo of a nearby star-forming region, NGC 1333. The nebula is in the Perseus molecular cloud, and is located approximately 960 light-years away.

It will soon be the 33rd anniversary of the launch of the Hubble Space Telescope, and to celebrate this milestone, Hubble scientists have shared a stunning image taken by the telescope of a picturesque nebula. NGC 1333 is a busy stellar nursery, with new stars forming among the cloud of dust and gas located 960 light-years away.

The beautiful image of the nebula shows swirls of dark dust around glowing points of light where new stars are being born. To capture this scene, Hubble used its instruments across their full wavelengths, from ultraviolet through the optical light range and into the near-infrared. Hubble took the image using its Wide Field Camera 3 instrument, which used several filter across different wavelengths that were then assigned to colors (Blue: F475W, Green: F606W, Red: F657N and F814W) to create the colorful final result.

Read more
James Webb captures a stunning image of two galaxies merging
Shining like a brilliant beacon amidst a sea of galaxies, Arp 220 lights up the night sky in this view from NASA’s James Webb Space Telescope. Actually two spiral galaxies in the process of merging, Arp 220 glows brightest in infrared light, making it an ideal target for Webb. It is an ultra-luminous infrared galaxy (ULIRG) with a luminosity of more than a trillion suns. In comparison, our Milky Way galaxy has a much more modest luminosity of about ten billion suns.

The James Webb Space Telescope has captured a gorgeous image of a dramatic cosmic event: two galaxies colliding. The two spiral galaxies are in the process of merging, and are glowing brightly in the infrared wavelength in which James Webb operates, shining with the light of more than a trillion suns.

It is not uncommon for two (or more) galaxies to collide and merge, but the two pictured in this image are giving off particularly bright infrared light. The pair has a combined name, Arp 220, as they appear as a single object when viewed from Earth. Known as an ultraluminous infrared galaxy (ULIRG), Arp 220 glows far more brightly than a typical spiral galaxy like our Milky Way.

Read more
James Webb captures stunning image of supernova remnant Cassiopeia A
Cassiopeia A (Cas A) is a supernova remnant located about 11,000 light-years from Earth in the constellation Cassiopeia. It spans approximately 10 light-years. This new image uses data from Webb’s Mid-Infrared Instrument (MIRI) to reveal Cas A in a new light.

A stunning new image from the James Webb Space Telescope shows a famous supernova remnant called Cassiopeia A, or Cas A. When a massive star comes to the end of its life and explodes in a huge outpouring of light and energy called a supernova, it leaves behind a dense core that can become a black hole or a neutron star. But that's not all that remains after a supernova: the explosion can leave its mark on nearby clouds of dust and gas that are formed into intricate structures.

The image of Cas A was taken using Webb's MIRI instrument, which looks in the mid-infrared range. Located 11,000 light-years away, Cassiopeia A is one of the brightest objects in the sky in the radio wavelength, and is also visible in the optical, infrared, and X-ray wavelengths. To see the different features picked up in different wavelengths, you can look at the slider comparison of the Webb infrared image alongside a Hubble visible light image of the same object.

Read more