Skip to main content

Hubble captures a galaxy with a highly energetic nucleus

This week’s image from the Hubble Space Telescope shows galaxy NGC 5728, captured in both the infrared and visible light wavelengths. This is a particularly energetic type of galaxy, called a Seyfert galaxy, with a very bright galactic nucleus.

“In this image, NCG 5728 appears to be an elegant, luminous, barred spiral galaxy,” the Hubble scientists write. “What this image does not show, however, is that NGC 5728 is also a monumentally energetic type of galaxy, known as a Seyfert galaxy. This extremely energetic class of galaxies is powered by their active cores, which are known as active galactic nuclei (AGNs). There are many different types of AGNs, and only some of them power Seyfert galaxies.”

A spiral galaxy around 130 million light-years from Earth, captured using Hubble’s Wide Field Camera 3.
Meet NGC 5728, a spiral galaxy around 130 million light-years from Earth. This image was captured using Hubble’s Wide Field Camera 3 (WFC3), which is extremely sensitive to visible and infrared light. Therefore, this image beautifully captures the regions of NGC 5728 that are emitting visible and infrared light. ESA/Hubble, A. Riess et al., J. Greene

Other types of galaxies with active galactic nuclei, like quasars, are difficult to see because the amount of radiation they emit obscures the entire galaxy. But Seyfert galaxies like NGC 5728 can be seen clearly and look much like standard galaxies.

This image was captured using Hubble’s Wide Field Camera 3, which images in both the visible light and infrared wavelengths, allowing it to capture the galaxy in all its glory. However, there is even more light being given off by the AGN in other wavelengths which can’t be captured by Hubble’s instruments.

This is one reason why astronomers observe the universe in a variety of wavelengths, like ultraviolet light, X-rays, or radio wavelengths. Each different wavelength allows them to see different features in nature. The infrared wavelength used by Hubble, for example, is particularly good for looking through clouds of dust to see structures that would otherwise be obscured.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble observes mysterious bright explosion in the middle of nowhere
An artist’s concept of one of the brightest explosions ever seen in space.

The Hubble Space Telescope recently observed something strange: an extremely bright, extremely fast flash of light that popped up in the middle of nowhere. Technically known as a Luminous Fast Blue Optical Transient (LFBOT), the odd thing about this rare event was that it occurred outside of a galaxy.

These flashes have been observed only a few times since they were discovered in 2018, and this particular event was named The Finch. Hubble was used to track the flash's origin point, which was in between two galaxies: 50,000 light-years away from a larger spiral galaxy and around 15,000 light-years away from a smaller galaxy. This has astronomers puzzled, as these events were thought to issue from inside galaxies where stars are forming -- but this event happened far away from any star-forming region.

Read more
A galaxy with layers like an onion shines in Dark Energy Camera image
The symmetrical, onion-like layers of shell galaxy NGC 3923 are showcased in this galaxy-rich image taken by the US Department of Energy’s (DOE) Dark Energy Camera mounted on the National Science Foundation’s (NSF) Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. A nearby, massive galaxy cluster is also captured exhibiting the phenomenon known as gravitational lensing.

A new image taken by the Dark Energy Camera shows a "galactic onion," a shell galaxy with multiple layers that are spread out over a distance of 150,000 light-years. At around twice the size of the Milky Way, the galaxy NGC 3923 is large, but even larger is a nearby galaxy cluster that has so much mass that it is bending space-time, making the light from distant galaxies behind it bend like a magnifying glass in a process called gravitational lensing.

The Dark Energy Camera is ground-based instrument located at the Víctor M. Blanco 4-meter Telescope in Chile and was originally built to observe many galaxies as part of a project called the Dark Energy Survey. Now, it is also used for other observations such as imaging dwarf galaxies, merging galaxies, and more.

Read more
Hubble snaps an autumnal nebula glowing orange from young, hot stars
Tthis image from the NASA/ESA Hubble Space Telescope features a glistening scene in red. It reveals a small regio

A new image from the Hubble Space Telescope shows a nebula in the gorgeous colors of autumn, just in time for leaf-changing season in the northern hemisphere. It shows a part of a nebula called Westerhout 5, located 7,000 light-years away and also known as the Soul Nebula.

It is an emission nebula, meaning that its gorgeous colors and shapes are created by gas which has become ionized by starlight from bright, hot stars. As very massive stars are born and give off large gusts of radiation and streams of particles called stellar winds, these blow away nearby material which prevents more stars from forming too close. This creates cavities within the nebula, and in between these cavities more gas is pushed together. Then more stars can form in these now denser regions.

Read more