Skip to main content

Hubble gets a peek at how stars could have formed in the early universe

With the early science results coming in from the James Webb Space Telescope we’re learning more than ever before about the early universe. But it’s not only Webb which is helping scientists to understand the universe when it was young — as a recent release from the Hubble Space Telescope demonstrates, we also have a lot to learn from other tools too.

Hubble researchers recently shared this image of a cluster of stars in the Small Magellanic Cloud, a dwarf satellite galaxy of our Milky Way. This small galaxy has a different chemical composition than our galaxy and is therefore more like the galaxies found in the early universe, so studying it can help us learn about how stars were born when the universe was still young.

A massive cluster of stars in the Small Magellanic Cloud, a satellite galaxy of the Milky Way.
Astronomers have been bemused to find young stars spiraling into the center of a massive cluster of stars in the Small Magellanic Cloud, a satellite galaxy of the Milky Way. The outer arm of the spiral in this huge, oddly shaped stellar nursery — called NGC 346 — may be feeding star formation in a river-like motion of gas and stars. This is an efficient way to fuel star birth, researchers say. NASA, ESA, A. James (STScI)

The cluster of stars, called NGC 346, is small in size at just 150 light-years across but is a particularly busy stellar nursery. This region is full of young stars, and these stars seem to be forming in a flowing spiral structure of gas and stars which the researchers compare to a river. This could help explain why the rate of star formation here is so high.

“Stars are the machines that sculpt the universe. We would not have life without stars, and yet we don’t fully understand how they form,” explained study leader Elena Sabbi of the Space Telescope Science Institute in Baltimore in a statement. “We have several models that make predictions, and some of these predictions are contradictory. We want to determine what is regulating the process of star formation because these are the laws that we need to also understand what we see in the early universe.”

The findings are relevant to the early universe because, like early galaxies, there are relatively few heavy elements to be found in the Small Magellanic Cloud. This means that the stars here burn hot and bright and die off quicker than stars in our galaxy. Seeing how stars are born in this cluster, where the material is moving in a spiral formation, helps explain what might have happened in the period two to three billion years after the Big Bang.

“A spiral is really the good, natural way to feed star formation from the outside towards the center of the cluster,” explained another of the researchers, Peter Zeidler of AURA/STScI for the European Space Agency. “It’s the most efficient way that stars and gas fueling more star formation can move towards the center.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
Hear the otherworldly sounds of interacting galaxies with this Hubble sonification
This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140.

When two different galaxies get close enough together that they begin interacting, they are sometimes given a shared name. That's the case with a newly released image from the Hubble Space Telescope that shows two galaxies, NGC 274 and NGC 275, which are together known as Arp 140. not only is there a new image of the pair, but there's also a sonification available so you can hear the image as well as see it.

This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140. NASA/ESA/R. Foley (University of California - Santa Cruz)/Processing: Gladys Kober (NASA/Catholic University of America)

Read more