Skip to main content

James Webb researcher reveals how it will investigate the early universe

Once the James Webb Space Telescope begins science operations this summer, it will the world’s most powerful space telescope, and it will open new avenues for astronomy research. One of the researchers who will be working with James Webb, Massimo Stiavelli, the Webb Mission Office head at the Space Telescope Science Institute, has shared more information about how Webb will look back in time at some of the earliest stars and galaxies.

Because light takes time to travel, the further away from Earth we look, the earlier we are seeing in the development of the universe. Webb will be able to see more distant galaxies than ever before, allowing researchers to get a glimpse of the early stages of the universe. By looking at the composition of these very early stars and galaxies, researchers can get an idea of what was happening in the few minutes after the Big Bang.

“The chemical composition of the early universe, just after the big bang, is the product of the nuclear processes that took place in the first few minutes of the universe’s existence,” Stiavelli said, as shared in a NASA blog post. “These processes are known as ‘primordial nucleosynthesis.’ One of the predictions of this model is that the chemical composition of the early universe is largely hydrogen and helium. There were only traces of heavier elements, which formed later in stars. These predictions are compatible with observations, and are in fact one of the key pieces of evidence that support the hot big bang model.”

Webb will be searching out examples of these very old stars to see if they support current theories about the Big Bang. “The earliest stars formed out of material with this primordial composition,” Stiavelli said. “Finding these stars, commonly dubbed as the ‘First Stars’ or ‘Population III stars,’ is an important verification of our cosmological model, and it is within reach of the James Webb Space Telescope. Webb might not be able to detect individual stars from the beginning of the universe, but it can detect some of the first galaxies containing these stars.”

Stiavelli’s project is to look at one of the furthest galaxies discovered to date, called MACS1149-JD1, using Webb. The team will measure how much of the galaxy is made up of heavier elements, using an instrument called a spectrograph, so they can confirm whether it is made up of these very early stars. The project will be a part of Webb’s first year of science operations.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
How to watch NASA’s first spacewalk of 2024
A NASA spacewalk.

NASA Live: Official Stream of NASA TV

UPDATE: The spacewalk was postponed due to a "spacesuit discomfort issue." A new schedule has yet to be announced.

Read more
James Webb discovers the most distant galaxy ever observed
JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang.

JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang. Credit: NASA, ESA, CSA, STScI, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), P. Cargile (CfA). NASA

Researchers using the James Webb Space Telescope have discovered the most distant known galaxy to date, one that is so far away that it existed just a few hundred million years after the Big Bang. Since Webb began its science operations in 2022, astronomers have used it to look for very distant, very ancient galaxies and have been surprised by what they found. Not only have they found many of these distant galaxies, but the galaxies are also brighter and more massive than they expected -- suggesting that galaxies evolved into large sizes faster than anyone imagined.

Read more
James Webb telescope peers at the atmosphere of a rocky hell world
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer.

This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometers (0.015 astronomical units), completing one full orbit in less than 18 hours. NASA, ESA, CSA, R. Crawford (STScI)

When it comes to learning about exoplanets, or planets beyond our solar system, the James Webb Space Telescope is providing more information than ever before. Over the last decade or so, thousands of exoplanets have been discovered, with details available about these worlds, such as their orbits and their size or mass. But now we're starting to learn about what these planets are actually like, including details of their atmospheres. Webb recently investigated the atmosphere around exoplanet 55 Cancri e, finding what could be the first atmosphere of a rocky planet discovered outside the solar system.

Read more