Skip to main content

See the very first image (and first selfie!) from James Webb

The James Webb Space Telescope is in its final orbit and has its science instruments turned on, but it’ll still be several months before the world’s most powerful space telescope is ready to collect science data. That’s because the telescope not only needs to reach a stable temperature but also because it needs to go through the careful and complex process of aligning its mirrors. But that doesn’t mean there’s nothing to see from this brand new telescope — in fact, NASA has just released both the first image captured by the telescope and even a selfie snapped by one of the telescope’s cameras.

The first image might not look like much, but it’s an indication that Webb’s NIRCam instrument is working to collect light from its target — a particularly bright star called HD 84406. The 18 points of light in the image represent each of the 18 segments of the telescope’s primary mirror, which are gradually being brought into alignment by making nanometer adjustments. “The entire Webb team is ecstatic at how well the first steps of taking images and aligning the telescope are proceeding,” said Marcia Rieke, principal investigator for the NIRCam instrument in a statement. “We were so happy to see that light makes its way into NIRCam.”

An image mosaic created by pointing the telescope at a bright, isolated star in the constellation Ursa Major known as HD 84406.
This image mosaic was created by pointing the telescope at a bright, isolated star in the constellation Ursa Major known as HD 84406. This star was chosen specifically because it is easily identifiable and not crowded by other stars of similar brightness, which helps to reduce background confusion. NASA

The image is a mosaic, stitched together from a huge 54 gigabytes of raw data captured over a 25-hour period. This is just a portion of the full mosaic, showing the same star imaged 18 times. This is invaluable data for the team as they work on aligning the mirrors to bring the telescope into focus.

In addition, the NIRCam instrument used a special lens to snap an image of the telescope itself, showing the distinctive hexagon-shaped mirror segments in the telescope’s first selfie. You can see one of the segments glowing brightly as that segment was pointed toward a star, while the other segments are currently at different alignments.

Selfie of a James Webb telescope mirror created using a specialized pupil imaging lens inside of the NIRCam instrument.
This “selfie” was created using a specialized pupil imaging lens inside of the NIRCam instrument that was designed to take images of the primary mirror segments instead of images of space. This configuration is not used during scientific operations and is used strictly for engineering and alignment purposes. In this case, the bright segment was pointed at a bright star, while the others aren’t currently in the same alignment. This image gave an early indication of the primary mirror alignment to the instrument. NASA

Over the next few months, the images captured by Webb will become sharper and show more details as the mirrors are aligned and the telescope’s other three instruments reach their stable temperatures and start capturing data as well. For now, the images show that the telescope is healthy and operating for the first time. “Launching Webb to space was, of course, an exciting event, but for scientists and optical engineers, this is a pinnacle moment, when light from a star is successfully making its way through the system down onto a detector,” said Michael McElwain, Webb observatory project scientist at NASA’s Goddard Space Flight Center.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb snaps an image of the famous and beautiful Crab Nebula
NASA’s James Webb Space Telescope has gazed at the Crab Nebula in the search for answers about the supernova remnant’s origins. Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) have revealed new details in infrared light.

Located 6,500 light-years away, the Crab Nebula is famous among astronomers for its elaborate and beautiful structure. A new image from the James Webb Space Telescope shows off the gorgeous nebula as seen in the infrared wavelength, highlighting the filaments of dust that create its cage-like shape.

The nebula is a supernova remnant, the result of a massive star that exploded at the end of its life centuries ago. The supernova was observed on Earth in 1054 CE, and since then astronomers have watched the nebula that resulted from that explosion grow and change.

Read more
James Webb observes merging stars creating heavy elements
This image from Webb’s NIRCam (Near-Infrared Camera) instrument highlights GRB 230307A’s kilonova and its former home galaxy among their local environment of other galaxies and foreground stars. The neutron stars were kicked out of their home galaxy and travelled the distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later.

In its earliest stages, the universe was composed mostly of hydrogen and helium. All of the other, heavier elements that make up the universe around us today were created over time, and it is thought that they were created primarily within stars. Stars create heavy elements within them in the process of fusion, and when these stars reach the ends of their lives they may explode in supernovas, spreading these elements in the environment around them.

That's how heavier elements like those up to iron are created. But for the heaviest elements, the process is thought to be different. These are created not within stellar cores, but in extreme environments such as the merging of stars, when massive forces create exceedingly dense environments that forge new elements.

Read more
Researchers discover a 320-mph jet stream around Jupiter’s equator
This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In this image, brightness indicates high altitude. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks.

The James Webb Space Telescope might be best known for its study of extremely distant galaxies, but it is also used for research on targets closer to home, like planets within our solar system. Last year, the telescope captured a stunning image of Jupiter as seen in the infrared wavelength, and now scientists who have been working on this data have published some of their findings about the planet -- including a brand-new feature that they identified in its atmosphere.

This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

Read more