Skip to main content

How James Webb will align its 18 primary mirror segments

With the James Webb Space Telescope at its final destination in orbit around the sun, now the telescope has to go through a series of alignment processes to get it ready for collecting science data. The process of aligning all of its mirrors has already begun, and concurrently with this, its instruments have been turned on for the first time since it left Earth as well.

The big step this week is that Webb’s primary camera, the Near Infrared Camera (NIRCam) instrument, has detected its first photons of starlight. This is far from being a full image of space, like those taken by Hubble, however, and the impressive images aren’t expected to start arriving until this summer. For now, the data collected by NIRCam will be used in the process of aligning the mirrors.

Recommended Videos

“With deployment of the mirror segments now complete, and the instruments turned on, the team has begun the numerous steps required to prepare and calibrate the telescope to do its job,” Scott Acton and Chanda Walker of Ball Aerospace, plus Lee Feinberg of NASA Goddard, wrote in an update. “The telescope commissioning process will take much longer than previous space telescopes because Webb’s primary mirror consists of 18 individual mirror segments that need to work together as a single high-precision optical surface.”

They also laid out the steps for the commissioning process, which are:

  • Segment Image Identification
  • Segment Alignment
  • Image Stacking
  • Coarse Phasing
  • Fine Phasing
  • Telescope Alignment Over Instrument Fields of View
  • Iterate Alignment for Final Correction

The first step involves pointing the telescope at a very bright star, isolated on its own, called HD 84406. The telescope captures images of this, which will look like 18 dots of light because of the 18 segments of mirror. These images can then be used to adjust the mirror sections to bring the dots into focus, and then stack them into a single point. Once that is done, all the light is in one place, but the segments of the mirror still need to be further adjusted to act as one large mirror rather than 18 smaller mirrors.

The entire process of alignment is expected to take around three months, after which the instruments will be commissioned.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb captures a rare astronomical ring in the sky
This new NASA/ESA/CSA James Webb Space Telescope Picture of the Month features a rare cosmic phenomenon called an Einstein ring. What at first appears to be a single, strangely shaped galaxy is actually two galaxies that are separated by a large distance. The closer foreground galaxy sits at the center of the image, while the more distant background galaxy appears to be wrapped around the closer galaxy, forming a ring.

A striking new image from the James Webb Space Telescope shows a rare object called an Einstein ring. This shows what appears to be a ring-shaped object in the sky, but is actually created by two separate galaxies and the epic forces of gravity.

There's a useful astronomical phenomenon called gravitational lensing, in which a large object like a galaxy or a cluster of galaxies has so much mass that it actually bends spacetime. If a massive object sits in front of a more distant object, as seen from Earth, the massive object can act like a magnifying glass, letting us see the very distant object in more detail than would normally be possible. This is a relatively common finding in astronomical images, and is one way that scientists are able to study extremely distant galaxies.

Read more
James Webb captures gorgeous image of a Cosmic Tornado
The NASA/ESA/CSA James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light with the NIRCam and MIRI instruments. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object (located within our Milky Way) with a more distant, face-on spiral galaxy in the background.

The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects.

This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the "Cosmic Tornado" because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image.

Read more
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more