Skip to main content

James Webb begins careful, slow process of aligning mirrors

With the exciting process of deployment complete, the James Webb Space Telescope team is now embarking on their next challenge: Aligning the telescope’s mirror segments. This slow, months-long process is required to fine-tune the individual optics into one large, accurate telescope.

The telescope’s primary mirror consists of 18 gold-colored hexagons made of beryllium, which fit together to create a huge mirror 6.5 meters across. It has a secondary mirror as well, which is a smaller round shape and is located at the end of the boom arms. These all require careful tweaking to be in exactly the right position to allow the telescope to be as accurate as possible.

Recommended Videos

To achieve that, the engineers began by sending commands to the 126 actuators which will move the primary mirror segments as well as six devices that position the secondary mirror to ensure that they were working. With that confirmed, they could begin moving the segments off of the snubbers that they were sitting on during launch to absorb vibrations in a process that will take around 10 days.

The adjustment of the mirrors will take around three months in total, and will require many small, careful tweaks. “Getting there is going to take some patience: The computer-controlled mirror actuators are designed for extremely small motions measured in nanometers,” wrote Marshall Perrin from the Space Telescope Science Institute in a blog post. “Each of the mirrors can be moved with incredibly fine precision, with adjustments as small as 10 nanometers (or about 1/10,000th of the width of a human hair). Now we’re using those same actuators instead to move over a centimeter. So these initial deployments are by far the largest moves Webb’s mirror actuators will ever make in space.”

In addition, each actuator needs to work one at a time for safety reasons, and it can only work for a short period to limit how much heat it creates and spreads to the very cold mirrors. So this will be a long, slow process to get the mirrors tuned.

“This may not be the most exciting period of Webb’s commissioning, but that’s OK,” Perrin wrote. We can take the time. During the days that we’re slowly deploying the mirrors, those mirrors are also continuing to slowly cool off as they radiate heat away into the cold of space. The instruments are cooling, too, in a gradual and carefully controlled manner, and Webb is also continuing to gently coast outwards toward L2. Slow and steady does it, for all these gradual processes that get us every day a little bit closer to our ultimate goal of mirror alignment.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb captures gorgeous image of a Cosmic Tornado
The NASA/ESA/CSA James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light with the NIRCam and MIRI instruments. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object (located within our Milky Way) with a more distant, face-on spiral galaxy in the background.

The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects.

This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the "Cosmic Tornado" because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image.

Read more
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more
James Webb captures a stunning view of the dreamy Flame Nebula
Webb's image of the Flame Nebula

Our universe is host to many beautiful and fascinating objects, and we're lucky enough to be able to view many of them using high tech instruments like the James Webb Space Telescope. A new Webb image shows a new view of the gorgeous Flame Nebula, an emission nebula located in the constellation of Orion.

This nebula is a busy stellar nursery, with many new stars being formed there. But it isn't stars which researchers were interested in when they looked to the nebula -- in this case, they were studying objects called brown dwarfs. Bigger than most planets but smaller than a star, brown dwarfs are too small to sustain fusion in their cores, so they are often referred to as failed stars.

Read more