Skip to main content

Scientists discover monster 17-pound meteorite in Antarctica

A team of researchers working in Antarctica have discovered a massive meteorite, weighing in at a hefty 17 pounds. Rocks falling to Earth from space aren’t uncommon, but it’s very unusual for such a large one to be found. Studying such meteorites can help scientists learn about early conditions in the solar system and even about how planets form.

The researchers found a total of five meteorites, including the gigantic 17-pounder. Antarctica is an inhospitable place for humans but a great location for meteorite hunting, thanks to its combination of dry climate and snowy conditions, which make it easier to spot dark hunks of rocks.

Related Videos
The researchers with their 16.7-pound find. White helmet: Maria Schönbächler. Green helmet: Maria Valdes. Black helmet: Ryoga Maeda. Orange helmet: Vinciane Debaille.
The researchers with their 16.7-pound find. White helmet: Maria Schönbächler. Green helmet: Maria Valdes. Black helmet: Ryoga Maeda. Orange helmet: Vinciane Debaille. Courtesy of Maria Valdes

As the coldest place on Earth, though, Antarctica is a difficult place to work — even if it is stunning to look at. “Going on an adventure exploring unknown areas is exciting,” said lead researcher Vinciane Debaille of the Université Libre de Bruxelles in Brussels. “But we also had to deal with the fact that the reality on the ground is much more difficult than the beauty of satellite images.”

Four team members had scoured the white continent for meteorites, using satellite imagery that had been used for mapping to locate the monster find. “Size doesn’t necessarily matter when it comes to meteorites, and even tiny micrometeorites can be incredibly scientifically valuable,” said Maria Valdes of the University of Chicago, one of the researchers, in a statement. “But of course, finding a big meteorite like this one is rare, and really exciting.”

Researchers estimate that of the approximately 45,000 meteorites found in Antarctica to date, only around 100 are this big or larger. Along with the four other meteorites discovered by the team, it will now be shipped to the Royal Belgian Institute of Natural Sciences for study.

Meteorites are scientifically valuable because they originate from beyond Earth, bringing a piece of the solar system to us for study. They can come from asteroids, comets, or even be pieces of other planets that have been blasted off by an impact. They can also reveal information about the early stages of the solar system because they can be extremely old and well-preserved due to their time in space.

“Studying meteorites helps us better understand our place in the universe,” said Valdes. “The bigger a sample size we have of meteorites, the better we can understand our Solar System, and the better we can understand ourselves.”

Editors' Recommendations

30,000 near-Earth asteroids have been discovered — and the search is on for more
Artist's impression of asteroid 21 Lutetia.

With NASA's DART mission recently succeeding in deflecting an asteroid from its course, you might think our planet is sorted when it comes to defense against incoming asteroids. But there are a whole lot of asteroids out there, and looking for potentially dangerous asteroids is an ongoing job.

According to the European Space Agency (ESA), there are now more than 30,000 known near-Earth asteroids in our solar system. A near-Earth asteroid is defined as one that comes close to the Earth at some point in its orbit, as many asteroids have highly elliptical orbits that bring them closer to the sun at some times than at others. Astronomers use a measurement called an Astronomical Unit (AU), which is the distance between the sun and the Earth, and near-Earth asteroids are those that come within 1.3 AU of the sun.

Read more
Heaviest element ever discovered in exoplanet atmospheres is a puzzle
This artist’s impression shows an ultra-hot exoplanet, a planet beyond our Solar System, as it is about to transit in front of its host star. When the light from the star passes through the planet’s atmosphere, it is filtered by the chemical elements and molecules in the gaseous layer. With sensitive instruments, the signatures of those elements and molecules can be observed from Earth. Using the ESPRESSO instrument of ESO’s Very Large Telescope, astronomers have found the heaviest element yet in an exoplanet's atmosphere, barium, in the two ultra-hot Jupiters WASP-76 b and WASP-121 b.

When it comes to finding habitable exoplanets, the next big challenge is not just spotting exoplanets or looking at their orbits, but getting a better understanding of what conditions there might be like by analyzing their atmospheres. New tools like the James Webb Space Telescope will allow us to peer into the atmospheres of exoplanets and see what they are composed of, which can affect the planet's surface temperature, pressure, and weather systems.

Now, astronomers using the European Southern Observatory’s Very Large Telescope (ESO’s VLT), a ground-based telescope located in Chile, have discovered the heaviest element ever in an exoplanet atmosphere. Looking at two ultra-hot gas giants called WASP-76 b and WASP-121 b, the researchers identified the element barium in their atmospheres.

Read more
One of James Webb’s 17 instrument modes isn’t working
The James Webb Space Telescope.

While the James Webb Space Telescope has been both a huge popular success and a highly effective research tool so far, not everything is perfect with the new observatory. This week, NASA announced that one of Webb's 17 observing modes is not functioning due to a hardware issue that is currently under review.

Webb has four instruments, all of which operate in the infrared portion of the spectrum. Three of the instruments -- NIRCam, NIRSpec, and NIRISS -- operate in the near-infrared and are working as intended, but there is an issue with the fourth instrument, MIRI, which operates in the mid-infrared.

Read more