Skip to main content

Otherworldly Mars image shows ripples sculpted by dust devils

The European Space Agency (ESA) has released a hauntingly beautiful image of the surface of Mars, showing how the landscape there is sculpted by winds.

The image, taken from orbit by the ESA and Roscosmos ExoMars Trace Gas Orbiter (TGO), shows the Hooke Crater area in the southern highlands of Mars. The false colors are due to the filters used by TGO’s CaSSIS camera, which looks in the infrared wavelength to capture more details of the surface mineralogy.

A fascinating and otherworldly landscape near Hooke Crater in Mars’ southern highlands.
Chaotic mounds, wind-sculpted ripples, and dust devil tracks: This image shows a fascinating and otherworldly landscape near Hooke Crater in Mars’ southern highlands. The image was taken by the CaSSIS camera onboard the ESA/Roscosmos ExoMars Trace Gas Orbiter (TGO) on February 1, 2021, and shows part of Argyre Planitia, centered at 46.2°S/318.3°E. ESA/Roscosmos/CaSSIS

This unusual-looking scenery is par for the course on Mars, where the thin atmosphere, high winds, and large amounts of dust combine to create striking features on the surface.

“This type of scenery is similar to ‘chaotic terrain’: A kind of broken, disrupted terrain seen across Mars where haphazard groups of variously sized and shaped rocks — irregular knobs, conical mounds, ridges, flat-topped hills known as mesas — clump together, often enclosed within depressions,” the European Space Agency explains. “There are around 30 regions of chaotic terrain defined on Mars (see ESA Mars Express views of Ariadnes Colles, Pyrrhae Regio, and Iani Chaos for just a small sample); while this small patch has not been defined as one of these, its appearance is certainly chaotic.”

Close-up image of the false-colored contrast (blue) indicating whorls from dust devils and canyons.
ESA/Roscosmos/CaSSIS

When seen up close, you can see the blue-tinted tendrils stretching out across the image. These are the tracks of dust devils, whirlwinds which are like tiny tornadoes and are common on Mars. When hot air at the surface of the planet rises quickly through cooler air above it, it forms an updraft that can begin to rotate and create a dust devil. This spinning column of air travels across the planet’s surface, leaving the distinctive tracks, before petering out.

ESA notes that the tracks seen in this image appear to travel on a north-south orientation, which could be the result of local winds blowing in that direction. Learning more about the <artian weather, including its winds, is the major focus of one of the instruments aboard NASA’s Perseverance rover. The MEDA instrument collects data on wind speed and direction, temperature, humidity, and the amount of dust in the atmosphere in order to better understand the martian weather system.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the passing of a day on Mars with the Curiosity rover
Curiosity rover

While many of us are on vacation this week between Christmas and New Year, the Curiosity rover on Mars is getting back to work after taking time off last month. In November, NASA's Mars missions paused for two weeks during an event called the Mars solar conjunction, when the sun is directly between Earth and Mars.

That means that any communications signals passing between the two planets would have to pass close to the harsh solar environment, where they would likely be degraded. To avoid any risk of garbled communications sending dangerous signals to the rovers, NASA stopped sending commands to both its Curiosity and Perseverance rovers until the solar conjunction passed.

Read more
Mars Odyssey spacecraft pulls a sideways maneuver to capture the planet’s horizon
NASA Orbiter Snaps Stunning Views of Mars Horizon

A new image from a NASA orbiter shows an unusual view of Mars that captures the planet's horizon complete with clouds. It is similar to the kinds of views of Earth that astronauts get from the International Space Station, showing what Mars would look like if seen from a similar vantage point.

The image was taken by NASA's Mars Odyssey spacecraft, which has been orbiting the planet since 2001. In its over 20 years of operations, the orbiter made key discoveries, including some of the first detections of subsurface ice on the planet. It has also created a global map of the planet's surface using its Thermal Emission Imaging System (THEMIS) instrument.

Read more
Stunning James Webb image shows the beating heart of our Milky Way
The full view of the NASA/ESA/CSA James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense centre. An estimated 500,000 stars shine in this image of the Sagittarius C (Sgr C) region, along with some as-yet unidentified features. A vast region of ionised hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionised hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionised region, covering about 25 light-years. A cluster of protostars – stars that are still forming and gaining mass – are producing outflows that glow like a bonfire at the base of the large infrared-dark cloud, indicating that they are emerging from the cloud’s protective cocoon and will soon join the ranks of the more mature stars around them. Smaller infrared-dark clouds dot the scene, appearing like holes in the starfield. Researchers say they have only begun to dig into the wealth of unprecedented high-resolution data that Webb has provided on this region, and many features bear detailed study. This includes the rose-coloured clouds on the right side of the image, which have never been seen in such detail.

A new image from the James Webb Space Telescope shows the heart of our galaxy, in a region close to the supermassive black hole at the center of the Milky Way, Sagittarius A*. The image shows a star-forming region where filaments of dust and gas are clumping together to give birth to new baby stars.

The image was captured using Webb's NIRCam instrument, a camera that looks in the near-infrared portion of the electromagnetic spectrum with shorter wavelengths shown in blue and cyan and longer wavelengths shown in yellow and red.

Read more