Skip to main content

How researchers use impact craters on Mars to date geological events

While rovers visiting the surface of Mars are invaluable research tools for understanding surface chemistry and other questions, observing Mars from orbit can help us understand the planet’s history — as recent images of a martian impact crater show.

The Mars Express orbiter uses its High Resolution Stereo Camera (HRSC) instrument to take photographs of the Martian surface, including geographical features and locations of water ice. Recently, ESA has shared images created from HRSC data of deep gouges on the surface of the Tantalus Fossae region. These troughs are part of a fault system that stretches nearly 1,500 miles across and are located around the edges of a low-lying volcano called Alba Mons.

This image from ESA’s Mars Express shows part of a large fault system on Mars known as Tantalus Fossae. This image comprises data gathered by Mars Express’ High Resolution Stereo Camera (HRSC) on 19 July 2021. It was created using data from the nadir channel, the field of view aligned perpendicular to the surface of Mars, and the colour channels of the HRSC. It is a ‘true colour’ image, reflecting what would be seen by the human eye if looking at this region of Mars.
This image from ESA’s Mars Express shows part of a large fault system on Mars known as Tantalus Fossae. This image comprises data gathered by Mars Express’ High Resolution Stereo Camera (HRSC) on 19 July 2021. ESA/DLR/FU Berlin

“The fossae were created as the summit of Alba Mons rose in elevation, causing the surrounding surface to become warped, extended, and broken,” ESA explains. “The Tantalus Fossae faults are a great example of a surface feature known as grabens; each trench formed as two parallel faults opened up, causing the rock between to drop down into the resulting void.”

This oblique perspective view of Tantalus Fossae on Mars was generated from the digital terrain model and the nadir and colour channels of the High Resolution Stereo Camera on ESA’s Mars Express.
This oblique perspective view of Tantalus Fossae on Mars was generated from the digital terrain model and the nadir and color channels of the High Resolution Stereo Camera on ESA’s Mars Express. ESA/DLR/FU Berlin

Another image shows the same region but from a different angle, as generated from digital information collected by the HRSC instrument and others. By bringing together information about elevation and surface features from different instruments, digital terrain models can be generated that show what the terrain looks like in three dimensions.

The large crater shown in the images can be helpful in dating the grabens features. The crater would have been caused when a chunk of rock or ice came streaming through the thin atmosphere and hit the planet, throwing up debris and creating a shock wave that forms a circular shape in the surface rock. The force of this impact would obliterate any surface features which existed there previously.

As the grabens can be seen running across the impact crater, they must have been formed after the impact occurred. This is one way that geologists build up a picture of the history of distant bodies like Mars or the moon, by looking at the age of certain geological events relative to particular impact craters. This impact crater is an old one, and it was already present on the surface when the Alba Mons volcano started pushing up to the surface and forming the faults of Tantalus Fossae.

If you look carefully at the top image, you can see another impact crater, much smaller and located at the bottom left of the main crater, which cuts across the fault lines. That suggests it is much younger and was created by an impact that occurred after the fault system formed.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Mars Odyssey spacecraft pulls a sideways maneuver to capture the planet’s horizon
NASA Orbiter Snaps Stunning Views of Mars Horizon

A new image from a NASA orbiter shows an unusual view of Mars that captures the planet's horizon complete with clouds. It is similar to the kinds of views of Earth that astronauts get from the International Space Station, showing what Mars would look like if seen from a similar vantage point.

The image was taken by NASA's Mars Odyssey spacecraft, which has been orbiting the planet since 2001. In its over 20 years of operations, the orbiter made key discoveries, including some of the first detections of subsurface ice on the planet. It has also created a global map of the planet's surface using its Thermal Emission Imaging System (THEMIS) instrument.

Read more
How astronomers used James Webb to detect methane in the atmosphere of an exoplanet
An artists rendering of a blue and white exoplanet known as WASP-80 b, set on a star-studded black background. Alternating horizontal layers of cloudy white, grey and blue cover the planets surface. To the right of the planet, a rendering of the chemical methane is depicted with four hydrogen atoms bonded to a central carbon atom, representing methane within the exoplanet's atmosphere. An artist’s rendering of the warm exoplanet WASP-80 b whose color may appear bluish to human eyes due to the lack of high-altitude clouds and the presence of atmospheric methane identified by NASA’s James Webb Space Telescope, similar to the planets Uranus and Neptune in our own solar system.

One of the amazing abilities of the James Webb Space Telescope is not just detecting the presence of far-off planets, but also being able to peer into their atmospheres to see what they are composed of. With previous telescopes, this was extremely difficult to do because they lacked the powerful instruments needed for this kind of analysis, but scientists using Webb recently announced they had made a rare detection of methane in an exoplanet atmosphere.

Scientists studied the planet WASP-80 b using Webb's NIRCam instrument, which is best known as a camera but also has a slitless spectroscopy mode which allows it to split incoming light into different wavelengths. By looking at which wavelengths are missing because they have been absorbed by the target, researchers can tell what an object -- in this case, a planetary atmosphere -- is composed of.

Read more
The Curiosity rover reaches a milestone on Mars
Curiosity Rover

NASA's Curiosity rover, which is currently exploring Mars' Gale Crater, recently marked an impressive milestone: 4,000 days on Mars. The rover landed more than a decade ago on August 5, 2012, and since then it has continued to explore the area, collect rock samples, and make its way up the epic slopes of Mount Sharp.

The 4,000 days are measured in mission time, which is calculated in martian days or sols. Due to the differing rates of rotation of Earth and Mars, a day on Mars is slightly longer than a day on Earth, by about 40 minutes. And also, due to the difference distances between Earth and Mars and the sun, a martian year is longer too - at 668 sols, equivalent to 687 Earth days. Those working on Mars rover missions, especially the rover drivers, have to operate on Mars time, so their schedules are out of sync with typical Earth working hours and they generally work on 90-sol shifts to allow them time to readjust to Earth schedules.

Read more