Skip to main content

NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away

The James Webb Space Telescope is NASA’s most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four “giant” planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system’s 4.6 billion years of age.

Recommended Videos

The astronomers studying the discovery identified these planets were formed by a process called “core accretion,” where a solid core forms first and is then surrounded by gases from “protoplanetary” disk. This property makes them planets comparable to Saturn and Jupiter.

HR 8799 exoplanets captured by NASA James Webb Space Telescope.
HR 8799 exoplanets captured by NASA’s James Webb Space Telescope. NASA, Johns Hopkins University

Although intense light emitting from distant stars can challenge direct photography of exoplanets, the team of astronomers used a device called near-infrared coronograph to block out direct light from HR 8799. This is also the first time, the Webb Telescope managed to capture a direct image of carbon dioxide.

Researchers also determined the composition of elements such as oxygen, carbon, and iron in the planets’ atmosphere by analyzing the varying wavelengths of the light from each planet. Besides the planetary system of HR 8799, the team also captured direct images of another star, 51 Eridani, along with its exoplanet.

William Balmer, lead author of the study, remarked the importance of knowing our neighboring solar systems and how we can utilize these insights to “understand our own solar system, life, and ourselves in the comparison to other exoplanetary systems, so we can contextualize our existence.”

The team now plans to study other nearby stars and objects orbiting them with hopes to explore more exoplanets and differentiate them from brown dwarfs.

Tushar Mehta
Tushar is a freelance writer at Digital Trends and has been contributing to the Mobile Section for the past three years…
Webb and Hubble snap the same object for two views of one galaxy
Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail.

With all the excitement over the last few years for the shiny and new James Webb Space Telescope, it's easy to forget about the grand old master of the space telescopes, Hubble. But although Webb is a successor to Hubble in some ways, with newer technology and the ability to see the universe in even greater detail, it isn't a replacement. A pair of new images shows why: with the same galaxy captured by both Webb and Hubble, you can see the different details picked out by each telescope and why having both of them together is such a great boon for scientists.

The galaxy NGC 2090 was imaged by Webb, shown above, using its MIRI and NIRCam instruments. These instruments operate in the mid-infrared and near-infrared portions of the electromagnetic spectrum respectively, which is why the arms of this galaxy appear to be glowing red. These arms are made of swirling gas and dust, and within them are compounds called polycyclic aromatic hydrocarbons that glow brightly in the infrared. The blue color in the center of the galaxy shows a region of young stars burning hot and bright.

Read more
Stunning view of the Sombrero Galaxy captured by James Webb
The NASA/ESA/CSA James Webb Space Telescope recently imaged the Sombrero galaxy with its MIRI (Mid-Infrared Instrument), resolving the clumpy nature of the dust along the galaxy’s outer ring. The mid-infrared light highlights the gas and dust that are part of star formation taking place among the Sombrero galaxy’s outer disk. The rings of the Sombrero galaxy produce less than one solar mass of stars per year, in comparison to the Milky Way’s roughly two solar masses a year. It’s not a particular hotbed of star formation. The Sombrero galaxy is around 30 million light-years from Earth in the constellation Virgo.

A new image from the James Webb Space Telescope shows a stunning and fashionable sight: the Sombrero Galaxy, named for its resemblance to the traditional Mexican hat. With its wide, flat shape reminiscent of the hat's wide brim, the galaxy, also known as Messier 104, has outer rings that are clearly visible for the first time.

The Sombrero Galaxy is located 30 million light-years away, in the constellation of Virgo, and it has been previously imaged by the Hubble Space Telescope. But while in the Hubble image, the galaxy appears as an opaque, pale disk, in the new Webb image you can see an outer blue disk, with a small bright core right at the center.

Read more
Creepy cosmic eyes stare out from space in Webb and Hubble image
The gruesome palette of these galaxies is owed to a mix of mid-infrared light from the NASA/ESA/CSA James Webb Space Telescope, and visible and ultraviolet light from the NASA/ESA Hubble Space Telescope. The pair grazed one another millions of years ago. The smaller spiral on the left, catalogued as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. Both have increased star formation rates. Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form. (Find these areas by looking for the bluest regions).

These sinister eyes gazing out from the depths of space star in a new Halloween-themed image, using data from both the Hubble Space Telescope and the James Webb Space Telescope. It shows a pair of galaxies, IC 2163 on the left and NGC 2207 on the right, which are creeping closer together and interacting to form a creepy-looking face.

The two galaxies aren't colliding directly into one another, as one is passing in front of the other, but they have passed close enough to light scrape by each other and leave indications. If you look closely at the galaxy on the left, you can see how its spiral arms have been pulled out into an elongated shape, likely because of its close pass to the gravity of the other nearby galaxy. The lines of bright red around the "eyes" are created by shock fronts, with material from each galaxy slamming together.

Read more