Skip to main content

The Perseverance rover is building a sample cache on Mars

There are currently a number of rovers, landers, and orbiters exploring Mars, gathering more information than ever before about the planet’s environment and its history. But to understand more about this place and particularly whether there was ever life there, we need to bring samples back from Mars to Earth for analysis here. That’s what NASA aims to do over the next decade with its Mars Sample Return plan.

As part of that plan, the Perseverance rover is collecting samples of rock and regolith as it explores the Jezero Crater. These samples are then sealed in tubes which are deposited on the martian surface, ready to be collected and brought back to Earth by a future mission.

The location where NASA’s Perseverance will begin depositing its first cache of samples is shown in this image taken by the Mars rover on Dec. 14, 2022, the 646th Martian day, or sol, of the mission.
The location where NASA’s Perseverance will begin depositing its first cache of samples is shown in this image taken by the Mars rover on Dec. 14, 2022, the 646th Martian day, or sol, of the mission. NASA/JPL-Caltech/ASU/MSSS

Perseverance will soon begin stashing these tubes in a “sample depot,” which will eventually hold 10 tubes deposited over around one month. The location for the depot had to be carefully chosen so it will be accessible by future missions, as the current plan is to have the samples retrieved either by rover or by helicopter.

Inspired by the success of the Mars helicopter Ingenuity, the idea is that several sample recovery helicopters could ferry the samples between their current location and a retrieval lander. But this requires the depot to be in a flat area without any hazards like large rocks with plenty of safe for take-offs and landings.

Individual tubes also need to be carefully placed within the depot area. As each helicopter can only pick up one tube at a time, the tubes can’t simply be left in a big pile. Instead, each tube needs to be placed in its own location several meters wide, spaced in a zig-zag pattern. The need for precise placement is why it will take Perseverance around one month to place all the tubes.

Included in the current selection of samples are a number of types of rocks from around Jezero, as well as samples of the dusty Mars soil called regolith. There is also a control tube called a witness tube, which doesn’t contain any rock but does contain a sample of the atmosphere to check for any contaminants.

“The samples for this depot – and the duplicates held aboard Perseverance – are an incredible set representative of the area explored during the prime mission,” said Meenakshi Wadhwa, the Mars Sample Return program principal scientist from Arizona State University, in a statement. “We not only have igneous and sedimentary rocks that record at least two and possibly four or even more distinct styles of aqueous alteration, but also regolith, atmosphere, and a witness tube.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA video maps all 72 flights taken by Mars Ingenuity helicopter
NASA's Ingenuity helicopter.

See Ingenuity’s Flight Map: 72 Helicopter Flights on Mars

NASA has shared a video (above) that maps all of the flights taken on Mars by its trailblazing Ingenuity helicopter.

Read more
Final communications sent to the beloved Ingenuity Mars helicopter
NASA’s Ingenuity Mars helicopter is seen here in a close-up taken by Mastcam-Z, a pair of zoomable cameras aboard the Perseverance rover. This image was taken on April 5, the 45th Martian day, or sol, of the mission.

Earlier this year, the beloved Mars helicopter Ingenuity ended its mission after an incredible 72 flights. Originally designed as a technology test intended to perform just five flights, NASA's helicopter was the first rotorcraft to fly on another planet and was such a success that it has already inspired plans for more exploration of distant planets using rotorcraft. Its mission came to an end, however, when it damaged one of its rotors, leaving it unable to safely fly.

Even then, the helicopter was still able to communicate by sending signals to the nearby Perseverance rover, which acted as its base station. Now, though, Perseverance is traveling away from the helicopter to continue its exploration of Mars. So this week, the NASA team on the ground met for the last time to communicate with Ingenuity, bringing the mission to a final close.

Read more
NASA needs a new approach for its challenging Mars Sample Return mission
An illustration of NASA's Sample Return Lander shows it tossing a rocket in the air like a toy from the surface of Mars.

NASA has shared an update on its beleaguered Mars Sample Return mission, admitting that its previous plan was too ambitious and announcing that it will now be looking for new ideas to make the mission happen. The idea is to send a mission to collect samples from the surface of Mars and return them to Earth for study. It's been a long-term goal of planetary science researchers, but one that is proving costly and difficult to put into practice.

The Perseverance rover has already collected and sealed a number of samples of Mars rock as it journeys around the Jezero Crater, and has left these samples in a sample cache ready to be collected.  However, getting them back to Earth in the previous plan required sending a vehicle to Mars, getting it to land on the surface, sending out another rover to collect the samples and bring them back, launching a rocket from the planet's surface (something which has never been done before), and then having this rocket rendezvous with another spacecraft to carry them back to Earth. That level of complexity was just too much to be feasible within a reasonable budget, NASA Administrator Bill Nelson announced this week.

Read more