Skip to main content

The Perseverance rover is building a sample cache on Mars

There are currently a number of rovers, landers, and orbiters exploring Mars, gathering more information than ever before about the planet’s environment and its history. But to understand more about this place and particularly whether there was ever life there, we need to bring samples back from Mars to Earth for analysis here. That’s what NASA aims to do over the next decade with its Mars Sample Return plan.

As part of that plan, the Perseverance rover is collecting samples of rock and regolith as it explores the Jezero Crater. These samples are then sealed in tubes which are deposited on the martian surface, ready to be collected and brought back to Earth by a future mission.

The location where NASA’s Perseverance will begin depositing its first cache of samples is shown in this image taken by the Mars rover on Dec. 14, 2022, the 646th Martian day, or sol, of the mission.
The location where NASA’s Perseverance will begin depositing its first cache of samples is shown in this image taken by the Mars rover on Dec. 14, 2022, the 646th Martian day, or sol, of the mission. NASA/JPL-Caltech/ASU/MSSS

Perseverance will soon begin stashing these tubes in a “sample depot,” which will eventually hold 10 tubes deposited over around one month. The location for the depot had to be carefully chosen so it will be accessible by future missions, as the current plan is to have the samples retrieved either by rover or by helicopter.

Recommended Videos

Inspired by the success of the Mars helicopter Ingenuity, the idea is that several sample recovery helicopters could ferry the samples between their current location and a retrieval lander. But this requires the depot to be in a flat area without any hazards like large rocks with plenty of safe for take-offs and landings.

Please enable Javascript to view this content

Individual tubes also need to be carefully placed within the depot area. As each helicopter can only pick up one tube at a time, the tubes can’t simply be left in a big pile. Instead, each tube needs to be placed in its own location several meters wide, spaced in a zig-zag pattern. The need for precise placement is why it will take Perseverance around one month to place all the tubes.

Included in the current selection of samples are a number of types of rocks from around Jezero, as well as samples of the dusty Mars soil called regolith. There is also a control tube called a witness tube, which doesn’t contain any rock but does contain a sample of the atmosphere to check for any contaminants.

“The samples for this depot – and the duplicates held aboard Perseverance – are an incredible set representative of the area explored during the prime mission,” said Meenakshi Wadhwa, the Mars Sample Return program principal scientist from Arizona State University, in a statement. “We not only have igneous and sedimentary rocks that record at least two and possibly four or even more distinct styles of aqueous alteration, but also regolith, atmosphere, and a witness tube.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Planetary defense mission Hera blasts off toward Mars
Hera will perform a swingby of Mars in March 2025 as a way of gathering extra momentum on its way to the Didymos binary asteroid system. The spacecraft will fly within the orbits of both Martian moons Deimos and Phobos, and perform science observations of the former body and the planet's surface, in synergy with the UAE's Hope orbiter and gathering preparatory data for JAXA-DLR's MMX Martian Moons eXploration mission due to be launched in 2026.

The European Space Agency (ESA)'s planetary defense mission, Hera, has completed the first major maneuver of its journey following its launch in October. The spacecraft has burned its thrusters to put it on a course toward Mars, which it should reach to perform a gravity assist flyby in 2025.

The mission is a follow-up to NASA's DART mission, which deliberately crashed into an asteroid in 2022. DART was testing to see whether impacting a spacecraft into an asteroid could alter its trajectory, which it succeeded in doing. The idea is that if an asteroid should ever threaten Earth, space agencies could send a spacecraft to crash into it and knock it off course.

Read more
Watch NASA’s Mars video of a ‘googly eye’ during solar eclipse
The Perseverance Mars rover took this selfie on Sept. 10, 2021 — sol 198 of the mission – in Jezero Crater after coring into a rock called ‘Rochette.’ Rock core samples from the floor of the crater will be brought back to Earth and analyzed to characterize the planet’s geology and past climate.

As it continues its painstaking search for microbial life on Mars, NASA’s Perseverance rover has also been reporting otherworldly happenings occurring during its adventures.

Just recently, for example, one of its many onboard cameras captured some remarkable footage of a solar eclipse as Phobos -- one of Mars’ two moons -- passed between the red planet and the sun.

Read more
Follow Mars rover’s 18-mile trip in NASA’s animated route map
The route taken on Mars by NASA's Perseverance rover.

NASA has shared a fascinating animation showing the route taken by the Perseverance rover on Mars since its arrival there in February 2021.

Perseverance is NASA’s most advanced Mars rover to date, and while its general routes are decided by a team at NASA’s Jet Propulsion Laboratory in Southern California, the rover actually moves forward autonomously, checking for hazards and moving around any problematic objects as it goes.

Read more