Skip to main content

Solar Orbiter captures incredible video of a coronal mass ejection

The sun, as captured by Solar Orbiter's Extreme Ultraviolet Imager (EUI) instrument on 12-13 February 2021.
The sun, as captured by Solar Orbiter’s Extreme Ultraviolet Imager (EUI) instrument on 12-13 February 2021. Solar Orbiter/EUI Team/Metis Team/SoloHI team/ESA & NASA

The European Space Agency’s Solar Orbiter spacecraft has captured video of an explosion of plasma from the sun, called a coronal mass ejection, for the first time.

Solar Orbiter completed a close pass to the sun in February this year, coming within half the distance between the sun and Earth. Although this pass was primarily to check the settings of the Orbiter’s instruments, it was still able to capture scientific data. And, fortuitously, three of its instruments were observing the sun in the days after this close approach when two coronal mass ejections occurred.

A coronal mass ejection (CME) is a huge expulsion of plasma from the sun’s corona, which travels across the solar system as solar wind. These solar winds travel all the way to Earth and can affect satellites and other electronics in orbit in a phenomenon called space weather. CMEs can even affect our planet more directly, by producing geomagnetic storms which can cause blackouts. The entire province of Quebec, Canada, was plunged into a blackout due to a CME in March 1989.

This has made studying and understanding solar activity a priority, so it is is fortunate that Solar Orbiter was able to capture a CME using a variety of different instruments which shows its effects rippling outward. The video below shows the CME, captured first by the Extreme Ultraviolet Imager (EUI) instrument, then it zooms out to show its effects on the sun’s outer corona, captured by the Metis coronagraph, then it zooms out even further to show the solar wind captured by the Heliospheric Imager (SoloHI).

Solar Orbiter’s multi-instrument view of a coronal mass ejection

These kinds of observations can help us learn more about the complex activity of the sun and how it propagates through the solar system. And they are just a taste of what to expect once all Solar Orbiter’s instruments are switched over to full science mode later this year.

“We’ve realized in the last 25 years that there’s a lot that happens to a CME between the surface of the sun and Earth,” Robin Colaninno, principal investigator for the SoloHI instrument, said in a statement. “So we’re hoping to get much better resolution images of all of these outflows by being closer to the sun.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Observing wild activity on the sun could help predict space weather
Solar activity captured by Solar Orbiter.

When the Solar Orbiter spacecraft made its closest flyby of the sun to date in March this year, it scooped up vast amounts of data from which we can learn about our star. The European Space Agency, which is running the mission in collaboration with NASA, has shared a raft of material from the preliminary analysis of this data, including the highest resolution image of the sun's south pole captured to date:

Solar Orbiter’s highest resolution image ever of the Sun’s south pole

Read more
Solar Orbiter image shows the boiling, roiling face of the sun
The Sun as seen by Solar Orbiter in extreme ultraviolet light from a distance of roughly 75 million kilometers. An image of Earth is also included for scale, at the 2 o’clock position.

The European Space Agency's Solar Orbiter has taken an incredible high-resolution image of the sun, showing its full face and its outer atmosphere or corona.

To give you an idea of just how big the sun is, the image includes a picture of the Earth for scale -- it's the teeny tiny dot in the top right corner of the image. The sun has a diameter of over 860,000 miles, which, as NASA points out, means that if the sun were the size of a typical front door, then the Earth would be the size of a nickel.

Read more
Telescopes turn on Parker Solar Probe’s latest approach to the sun
NASA’s Parker Solar Probe approaching the Sun.

NASA's Parker Solar Probe, a sun-investigating spacecraft that made history last year when it flew through the sun's corona, has made another swing around the sun. And this time it was watched by both other spacecraft and by ground-based telescopes.

Missions like Parker get close to the sun by performing a series of flybys of other planets. This spacecraft makes passes around Venus, and it uses the planet's gravity to adjust its trajectory as it moves back toward the sun. Over the course of seven Venus flybys, it will get closer and closer to the sun until it moves into its final altitude, coming within 4 million miles of the sun's surface in December 2024.

Read more