Skip to main content

Breakthrough in bioprinting could enable 3D printing of replacement organs

Bioprinting research from the lab of Rice University bioengineer Jordan Miller featured a visually stunning proof-of-principle — a scale-model of a lung-mimicking air sac with airways and blood vessels that never touch yet still provide oxygen to red blood cells. Jordan Miller/Rice University

Scientists have taken a major step towards the 3D-printing of replacement organs. A new technique for bioprinting tissues allows scientists to create vascular networks like those used in the body to transport blood, air, and other fluids.

Along with publishing the research in the journal Science, the scientists released a video showing a lung-like air sac which can feed nutrients and oxygen to nearby tissue:

Bioengineers clear major hurdle on path to 3D printing replacement organs

“One of the biggest road blocks to generating functional tissue replacements has been our inability to print the complex vasculature that can supply nutrients to densely populated tissues,” Jordan Miller, assistant professor of bioengineering at Rice University’s Brown School of Engineering, explained in a statement.

“Further, our organs actually contain independent vascular networks — like the airways and blood vessels of the lung or the bile ducts and blood vessels in the liver. These interpenetrating networks are physically and biochemically entangled, and the architecture itself is intimately related to tissue function. Ours is the first bioprinting technology that addresses the challenge of multivascularization in a direct and comprehensive way.”

The importance of this development was underscored by Miller’s colleague, Kelly Stevens of the University of Washington. “Tissue engineering has struggled with this for a generation,” Stevens said. “With this work we can now better ask, ‘If we can print tissues that look and now even breathe more like the healthy tissues in our bodies, will they also then functionally behave more like those tissues?’ This is an important question, because how well a bioprinted tissue functions will affect how successful it will be as a therapy.”

The scientists expect that bioprinting will become a part of mainstream medicine with the next 20 years. Current research is being performed in both university and private settings, such as startup company Volumetric which employs several of the researchers. But Miller is a proponent of open-source 3D printing and has made all the data from this experiment freely available through the publication in the journal Science.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The best 3D printers under $500
3D printers are finally affordable. Here are the best models under $500
anycubic photon review 3d printer xxl 2

The 3D printing market has seen quite a few changes over the last few years. In just the span of a decade, the barrier to entry has dropped from well over several thousand dollars to under $200 in some cases. However, all entry and mid-level printers are not made equal. We have a few suggestions for prospective buyers and other information regarding alternatives not found on this list.

To some veterans of the 3D printing scene, this list may seem like it lacks a few of the most commonly recommended printers for newcomers. This is by design. Our list only considers printers with tested components from proven, reliable vendors. That's why we chose the Monoprice MP Mini v2 as our top pick--it's reliable and easy to use. We have avoided any printer with a frame primarily made from interlocking acrylic pieces and anything historically unreliable.
Most bang for your buck: Monoprice MP Mini v2
 
Pros:

Read more
Ceramic ink could let doctors 3D print bones directly into a patient’s body
ceramic ink 3d printed bones bioprinting australia 2

Scientists use a novel ink to 3D print ‘bone’ with living cells

The term 3D bioprinting refers to the use of 3D printing technology to fabricate biomedical parts that, eventually, could be used to create replacement organs or other body parts as required. While we’re not at that point just yet, a number of big advances have been made toward this dream over the past couple of decades.

Read more
The future of making stuff: Inside the evolution of 3D printing with Formlabs
future of 3d printing formlabs ces 2021 castablewax40

When 3D printing went mainstream in the mid-2010s and exploded in popularity, it was about as hyped up as it possibly could be. Evangelists told us it would fundamentally transform the way goods were made, and usher in a bold new era of creative freedom. Soon, they said, we’d be able to fabricate anything we wanted on-demand, Star Trek replicator style, right from the comfort of our own homes.

But of course, 3D printing didn't really live up to that high-flying dream. Instead, it made a momentary splash and then largely returned to the fringes, gaining adoption in hobbyist workshops and cutting-edge product design labs, but not really changing the face of manufacturing in the way many hoped it might.

Read more