Skip to main content

Kickstarter could make this antimatter propulsion system a reality

In Gene Roddenberry’s Star Trek universe, the mostly fictional antimatter engines aboard Federation starships served as a critical element to the fleet’s operation. Theoretically, these engines possessed the ability to regulate the interaction of a ship’s stored antimatter and were used to disrupt time ( i.e., to move the USS Enterprise forward or backward in time). Though this use of antimatter exists in the pages of science fiction, two renowned physicists announced this week they’ll soon use the popular crowdfunding site Kickstarter to help fund their next round of antimatter research. In real life.

For the better part of the last 13 years, physicists Gerald Jackson and Steven Howe worked tirelessly at convincing the likes of NASA (and various other parties) their idea for an antimatter propulsion system was legit. Way back in 2003, the duo presented their initial vision of deep space travel by unveiling the design idea for an antimatter driven sail. Back then, Jackson and Howe maintained that in 20 years, humanity would desire to travel deeper into space and that a lightweight, low-demanding method would be necessary. They posited that the generation and use of antimatter would ultimately help achieve this.

Artist rendition of Jackson and Howe's antimatter probe
Artist rendition of Jackson and Howe’s antimatter probe Steven Howe/Hbar Technologies, LLC

So what is antimatter? Essentially, this material is precisely what its name implies; it’s the opposite of regular matter. Whereas regular matter consists of atoms with positively charged nuclei and negatively charged electrons, antimatter atoms boast negatively charged centers and positively charged electrons. When an antimatter atom collides with a regular matter atom, annihilation of both particles occur, creating an immense release of energy. It’s this released energy the physicists hope to one day control and use as spaceship propulsion.

Recommended Videos

During their presentation, Jackson and Howe detailed exactly how a small probe would make use of this propulsion, saying it could travel from Earth to Alpha Centauri in just 40 years. Moreover, they claimed that just 17 grams of antimatter would be needed for such a journey to occur and that this antimatter would allow the probe to travel at speeds of roughly a tenth of lightspeed. However, devising a solid method for the manufacturing of antimatter supply remains as big an elephant in the room today as it did 13 years ago.

Although there exist methods of creating antimatter — Fermilab and CERN have the ability to do this with their respective colliders — only a small amount has ever been created. According to Symmetry Magazine, if all antimatter ever created was destroyed at the same time, there wouldn’t even be enough energy to bring a cup of tea to a boil; forget traveling to deep space. Additionally, it’s assumed that creating even one gram of antimatter would cost in the roughly millions of billions of dollars (!) due in part to it requiring around 25 million billion kilowatt hours of energy. Suffice it to say, antimatter’s not cheap.

CERN's Large Hadron Collider
CERN’s Large Hadron Collider CERN

Enter the Kickstarter campaign, where Hbar Technologies (Jackson and Howe’s company) hopes to raise $200,000 to undertake further research and development on their theory. Ideally, the proposed funding would allow the duo to manufacture a machine capable of measuring the amount of potential thrust an antimatter propulsion system might create. They do acknowledge, however, that building an actual antimatter drive would likely cost around $100 million (that is, if it works).

Even if the antimatter drive ends up functioning in line with the physicist’s theory, there remains yet another set of hurdles that would need to be overcome before an antimatter engine saw the light of day. First off, storing the stuff would be a feat all its own considering how unstable it is and the fact it can’t touch actual matter — which according to Fermilab physicist James Annis, is “surprisingly hard to do.” For instance, if antimatter somehow comes in contact with parts of its holding container, a catastrophic nuclear bomb-type explosion could occur.

But let’s say Jackson and Howe do figure out a way to consistently create antimatter, somewhat inexpensively manufacture a working antimatter drive, and develop a safe way to store it. What would the final design look like then? In this example, the duo would use antimatter to incite fission aboard a spacecraft and, during the reaction, “daughter” byproducts of uranium would be created. As one of the byproducts travels forward, it would strike an onboard sail and propel the craft forward. The other byproduct would then shoot out the back of the craft thus creating another bit of thrust.

If funding proves successful and the duo’s system comes to fruition, Jackson believes it would only take roughly 20 to 30 years before a viable spacecraft could travel at 40 percent the speed of light. As of now, the team has only announced its intent to take the project to Kickstarter, though it plans to officially launch the campaign sometime next month.

Rick Stella
Former Associate Editor, Outdoor
Rick became enamored with technology the moment his parents got him an original NES for Christmas in 1991. And as they say…
Zoox recalls robotaxis after Las Vegas crash, citing software fix
zoox recall crash 1739252352 robotaxi side profile in dark mode

Amazon's self-driving vehicle unit, Zoox, has issued a voluntary safety recall after one of its autonomous vehicles was involved in a minor collision in Las Vegas. The incident, which occurred in April 2025, led the company to investigate and identify a software issue affecting how the robotaxi anticipates another vehicle’s path.
The recall, affecting 270 Zoox-built vehicles, was formally filed with the National Highway Traffic Safety Administration (NHTSA). Zoox said the issue has already been addressed through a software update that was remotely deployed to its fleet.
Zoox’s robotaxis, which operate without driving controls like a steering wheel or pedals, are part of Amazon’s entry into the autonomous driving space. According to Zoox’s safety recall report, the vehicle failed to yield to oncoming traffic while making an unprotected left turn, leading to a low-speed collision with a regular passenger car. While damage was minor, the event raised flags about the system’s behavior in complex urban scenarios.
Establishing safety and reliability remain key factors in the deployment of the relatively new autonomous ride-hailing technology. Alphabet-owned Waymo continues to lead the sector in both safety and operational scale, with services active in multiple cities including Phoenix and San Francisco. But GM’s Cruise and Ford/VW-backed Argo AI were forced to abandon operations over the past few years.
Tesla is also expected to enter the robotaxi race with the launch of its own service in June 2025, leveraging its Full Self-Driving (FSD) software. While FSD has faced heavy regulatory scrutiny through last year, safety regulations are expected to loosen under the Trump administration.
Zoox, which Amazon acquired in 2020, says it issued the recall voluntarily as part of its commitment to safety. “It’s essential that we remain transparent about our processes and the collective decisions we make,” the company said in a statement.

Read more
Mitsubishi’s back in the EV game—with a new electric SUV coming in 2026
mitsubishi bev 2026 momentum 2030 line up

Mitsubishi is officially jumping back into the U.S. electric vehicle scene—and this time, it’s not just dipping a toe. The company confirmed it will launch a brand-new battery-electric SUV in North America starting in summer 2026, marking its first fully electric model here since the quirky little i-MiEV left the stage back in 2017.
The new EV will be a compact crossover, and while Mitsubishi is keeping most of the juicy details under wraps, we do know it’ll be based on the same next-gen platform as the upcoming Nissan Leaf. That means it’ll ride on the CMF-EV architecture—the same one underpinning the Nissan Ariya—which supports ranges of up to 300+ miles. So yeah, this won’t be your average entry-level EV.
Designed in partnership with Nissan, the new model will be built in Japan and shipped over to U.S. shores. No word yet on pricing, battery size, or even a name, but Mitsubishi has made it clear this EV is just the beginning. As part of its “Momentum 2030” plan, the company promises a new or updated vehicle every year through the end of the decade, with four electric models rolling out by 2028. And yes, one of those might even be a pickup.
Mitsubishi says the goal is to give customers “flexible powertrain options,” which is marketing speak for: “We’ll have something for everyone.” So whether you're all-in on electric or still into gas or hybrid power, they're aiming to have you covered.
This mystery EV will eventually sit alongside Mitsubishi’s current U.S. lineup—the Outlander, Outlander PHEV, Eclipse Cross, and Outlander Sport—and help the brand move beyond its current under-the-radar status in the electric world.
In short: Mitsubishi’s finally getting serious about EVs, and if this new SUV lives up to its potential, it might just put the brand back on your radar.

Read more
Toyota unveils 2026 bZ: A smarter, longer-range electric SUV
toyota bz improved bz4x 2026 0007 1500x1125

Toyota is back in the electric SUV game with the 2026 bZ, a major refresh of its bZ4X that finally delivers on two of the biggest demands from EV drivers: more range and faster charging.
The headline news is the improved driving range. Toyota now estimates up to 314 miles on a single charge for the front-wheel-drive model with the larger 74.7-kWh battery—about 60 miles more than the outgoing bZ4X. All-wheel-drive variants also get a boost, with up to 288 miles of range depending on trim.
Charging speeds haven’t increased in terms of raw kilowatts (still capped at 150 kW for DC fast charging), but Toyota has significantly improved how long peak speeds are sustained. With preconditioning enabled—especially helpful in colder weather—the new bZ can charge from 10% to 80% in about 30 minutes. Also new: Plug and Charge support for automatic payment at compatible stations and full adoption of the North American Charging Standard (NACS), meaning access to Tesla Superchargers will be standard by 2026.
Under the hood, or rather the floor, Toyota has swapped in higher-performance silicon carbide components to improve efficiency and power delivery. The AWD version now produces up to 338 horsepower and sprints from 0–60 mph in a brisk 4.9 seconds.
Toyota didn’t stop at just the powertrain. The exterior has been cleaned up, with body-colored wheel arches replacing the black cladding, and a sleeker front fascia. Inside, a larger 14-inch touchscreen now houses climate controls, giving the dash a more refined and less cluttered appearance. There’s also more usable storage thanks to a redesigned center console.
With the 2026 bZ, Toyota seems to be responding directly to critiques of the bZ4X. It’s faster, more efficient, and more driver-friendly—finally bringing Toyota’s EV efforts up to speed.

Read more