Skip to main content

The next generation of bandages will detect infections, release medicine, and more

Smart Bandage Detects Invisible Wounds
When tech and medicine meet, everyone benefits. The tech doesn’t have to be a new MRI or laser printed organs, either — even the lowly bandage can benefit from an upgrade. Different researchers worldwide are using their particular expertise to develop a host of newer, smarter, more effective bandages; many of which are steadily making their way out of the lab and into the real world. Here’s a quick overview of all the awesome bandage tech that you can expect to see in the not-so-distant future:

A Bandage of a Different Color

In 2010, a German team from the Fraunhofer Research Institutions for Microsystems and Solid State Technology EMFT created a bandage that looks like any other self-adhesive band-aid, but changes color to indicate infection by reacting to the pH of the skin beneath. Healthy healing wounds have a pH of about five or six. If this gets too alkaline, that can mean there’s an infection brewing underneath. The bandage will turn purple between 6.5 and 8.5 pH.

Another team from South Korea, Germany, and the US represented by Dr. Conor Evans from the Wellman Center for Photomedicine took a different tack: Liquid bandages funded in part by the Department of Defense. These can also clearly indicate wound healing, but not by detecting pH. The liquid bandage is designed to map oxygen concentrations in skin, including burns. In case you didn’t know, blood supply rich with oxygen and glucose is integral to wound healing. A deficit can result in poor recovery and chronic sores.

Current wound assessment is limited to the sniff test, visual inspection, or electrochemical analysis, which requires sticking electrodes (like needles) into the wound. The latter sounds like a miserable process for patients. A less invasive measurement option is available if you have the equipment to trace radioactive markers, but positron emission tomographs are pricey and not widely available.

smart bandage berkeley bioelectronics
Image used with permission by copyright holder

The team’s new liquid bandage can deliver this information quickly and simply by changing color. Two oxygen-sensitive dyes; red porphyrin (similar to hemoglobin) and a green dye, are incorporated into a nitrocellulose liquid. The liquid glows green where the tissue underneath is properly oxygenated, and show red where there’s an oxygen deficit. A thin film on top of the bandage keeps atmospheric oxygen from confusing the readings, and the porphyrin from contacting the skin. The porphyrin is unique and the last component awaiting FDA approval; its brightness makes it possible to view the color changes with the naked eye. While porphyrins are generally expensive, this application only uses nanograms.

This new liquid is already being tested on animals, and the team is hoping to move forward to clinical trials soon. Dr. Conor Evans from the Wellman Center for Photomedicine called it a “platform technology that can be incorporated into existing bandages, or bioelectronic systems.”

Bio-Electronic Bandaids

A team of researchers from Tufts, Perdue, Harvard, and Women’s Hospital, supported by the National Science Foundation is, working on a new kind of bioelectronic smart bandage. The team introduced a bandage that uses sensors, biomaterials, and microsystems tech to monitor and treat wounds that require longer-term care, such as diabetic ulcers and burns.

Dubbed “flexible bioelectronics,” it’s still an emerging technology. The idea is to incorporate circuits into flexible, safe polymeric substrates. Intended for biomedical and life science applications, they will be able to track the healing process by checking oxygen levels and temperature. Health professionals would receive readings of this info, even – and especially – when they’re not with the patient.

tattoo medical
Image used with permission by copyright holder

They’re hard at work applying new materials like a hydrogel to improve the flexibility factor. For drug delivery; polymeric microparticles will be embedded in the hydrogel patch of the bandage during the manufacturing process. A stimulation mechanism goes on top of the patch. Flexible sensors monitor temp and pH, and if the wound changes for the worse, the researchers send a pulse to the stimulator to release the drugs in the microparticles.

A group of doctors from Melbourne and Monash Universities lead by Nico Voelcker is working on a flexible bandage that uses nanotechnology for monitoring and alerts. In theory, it will change color like the liquid bandages, and use sensors and Bluetooth to send data to a smartphone. The idea is to be able to detect the signs of infection sooner, and without removing the bandage and thereby compromising the healing process. The concept has been prototyped, but needs more funding to move on to clinical trials.

Preemptive care in bandaging

One team out of UC Berkeley, also supported by the NSF, is working on a bandage that detects tissue damage before it even becomes visible. Intended for pressure ulcers, otherwise known as bedsores, the bandage monitors the electrical changes caused by cell death. It is essentially a printed array of tiny electrodes on a thin flexible film. Bedsores can be anything but minor: Christopher Reeve died of an infection that started with a bedsore. When internal cells (not at the surface of the skin) start to die, the cell walls break down and the bandage reads the electrical signals that escape the degraded walls.

patch1
Image used with permission by copyright holder

The sore-prevention bandage has already been tested on rats. Investigator of the study and Professor of surgery at USCF Dr. Michael Harrison said, “By the time you see signs of a bedsore on the surface of the skin it’s usually too late… If you can detect bedsores early on, the solution is easy. Just take the pressure off.”

Further indications for such bandages include using electrical fields to control the healing process. The theory is that since cells, epithelial cells in particular, are repsonsive to electical fields, manipulating such fields can change the way wounds heal. This is all in the future at this point, however if researchers can figure out how to trigger galvanotaxis — the process of cells migrating to the injury —  it might be possible to adjust how a wound heals, minimizing scar tissue, for example, rather than just making it heal faster.

The two NSF and the DoD project conclude in 2016, but we shouldn’t expect to see the next generation of bandages on our shelves for at least another five years. Some of the technologies listed here involve disciplines that don’t always coordinate. After speaking to some of the doctors involed with the technology in this article, we can hope that Digital Trends has served some small purpose by encouraging chemists and bio-electronics specialists to come together.

Aliya Barnwell
Former Digital Trends Contributor
Aliya Tyus-Barnwell is a writer, cyclist and gamer with an interest in technology. Also a fantasy fan, she's had fiction…
This bracelet helps you fall asleep faster and sleep longer
woman-in-bed-wearing-twilight-apollo-on-ankle

This content was produced in partnership with Apollo Neuroscience.
Have you been struggling to get the recommended seven hours of sleep? It's always frustrating when you get in bed at a reasonable time, then toss and turn for a hours before you actually sleep. The quality of that sleep is important too. If you're waking up multiple times during the night, you're likely not getting the quality REM cycle sleep that truly rejuvenates your body. If traditional remedies like herbal teas and noise machines just aren't helping, maybe it's time to try a modern solution. Enter the Apollo wearable.

Now we understand being a little skeptical. How can a bracelet on your wrist or ankle affect your sleep patterns? Certainly the answer to a better night's sleep can't be so simple. We considered these same things when we first heard of it. We'll dive deeper into the science behind the Apollo wearable, but suffice it to say that many people have experienced deeper, uninterrupted sleep while wearing one.
A non-conventional approach to better sleep

Read more
The 11 best Father’s Day deals that you can get for Sunday
Data from a workout showing on the screen of the Apple Watch Series 8.

Father's Day is fast approaching and there's still time to buy your beloved Dad a sweet new device to show him how much you love him. That's why we've rounded up the ten best Father's Day tech deals going on right now. There's something for most budgets here, including if you're able to spend a lot on your loved one. Read on while we take you through the highlights and remember to order fast so you don't miss out on the big day.
Samsung Galaxy Tab A8 -- $200, was $230

While it's the Plus version of the Samsung Galaxy Tab A8 that features in our look at the best tablets, the standard variety is still worth checking out. Saving your Dad the need to dig out their laptop or squint at a small phone screen, the Samsung Galaxy Tab A8 offers a large 10.5-inch LCD display and all the useful features you would expect. 128GB of storage means plenty of room for all your Dad's favorite apps as well as games too. A long-lasting battery and fast charging save him the need for a power source too often too.

Read more
The Apollo wearable is proven to help you sleep better (and it’s on sale)
Apollo wearable worn during sleep in bed.

This content was produced in partnership with Apollo Neuro.
Stress, anxiety, and insomnia are all concerning things that just about everyone struggles with at one time or another. Maybe you can sleep, fending off insomnia, but you lack quality sleep and don’t feel rested in the morning. Or, maybe when it’s time to kick back and relax, you just can’t find a way to do so. There are many solutions for these issues, some work, and others don’t, but one unlikely area of support can be found in a modern, smart wearable.

Medicine is the obvious choice, but not everyone prefers to go that route. There is an answer in modern technology or rather a modern wearable device. One such device is the Apollo wearable, which improves sleep and stress relief via touch therapy. According to Apollo Neuro, the company behind the device, which is worn on your ankle, wrist or clipped to your clothing, it sends out waves of vibrations to help your body relax and reduce feelings of stress. It's an interesting new approach to a common problem that has typically been resolved via medicine, therapy, or other more invasive and time-consuming techniques. The way it utilizes those vibrations, uniquely placed and administered, to create a sense of peace, makes us ask, can it really cure what ails us? We’ll dig a little deeper into how it achieves what it does and what methods it’s using to make you feel better.

Read more