Skip to main content

Two years and a pandemic later, fast-charging graphene batteries are hitting shelves

Back when CES was still a live event, we talked with the folks at Real Graphene about how they were going to blow everyone’s minds with their groundbreaking battery tech. They’ve been busy little beavers since then, and not only because their supply chains have been brutalized during the pandemic. They’ve merged with a company called Elecjet, locked down patents, breezed through their first crowdfunding campaign, and are well on their way through their second campaign.

Elecjet Apollo Ultra - - World's fastest Charging Power Bank Live on Indiegogo

What’s the big deal about graphene anyway?

The big deal is that graphene-based batteries charge really fast. We’ve been trying out Elecjet’s upcoming Apollo Ultra, and it can top up its 10,000mAh capacity in a half hour easily. This really hits home when you realize most batteries at this capacity take a couple of hours to get fully charged. The Apollo Ultra’s performance relies a fair bit on having a 100-watt charger, but the graphene cathode is what’s doing the heavy lifting here.

OK, but how does a graphene battery even work?

Relax, we were just getting to that. First, let’s run through a quick refresh on how lithium-ion batteries work. In short, a battery has two main compartments separated by a porous membrane. When you charge a battery, it’s pulling electrons from one compartment to the other. The membrane prevents those electrons from drifting on back to their natural home on the starting side. When the battery circuit is completed by a gadget needing some juice, those electrons have a path back. So those electrons run through all of the hoops they need to in order to get back to their starting point, thus creating the wonderful electrical current we need to watch cat videos on YouTube.

Sdk16420/Creative Commons

Now, these electrons need somewhere to chill on either side. Traditionally, the negatively charged anode side of a lithium-ion battery uses graphite. It’s carbon, it’s stable, and it’s just clingy enough to electrons that they’ll stay there, but not so clingy that they can’t be pulled off. The anode is the side that is pulling the electrons when you’re charging a battery.

Graphene is a single monomolecular layer of graphite. Due to this structure, graphene is even more stable than graphite. It provides a unique lattice for electrons to settle into above and below the sheet without having other sheets to bump into, as with graphite. Graphene can be 70% more conductive than copper, which seriously improves battery charging performance.

Sooooo … fast charging? That’s it?

Such a cynic! The other side of using graphene is its extended overall life cycle. Since graphene is more stable than graphite, it degrades much more slowly. As you charge and discharge a battery, the mediums that hold the electrons at anode and cathode get a little busted up from pulling electrons from them all the time. The carbon atoms in graphene have super-tight bonds, which, according to Elecjet, afford the Apollo Ultra battery over 2,500 power cycles, compared to the usual 500. While that remains to be seen throughout everyday use, a 5x reduction in battery waste could very well outshine the initial novelty of fast charging.

How long until we see graphene batteries take over?

The Apollo Ultra is Elecjet’s fourth graphene battery, but there are little signs of other manufacturers making the same moves. Graphene-based fast charging is getting to the point where it can pose a significant competitive advantage in a sea of samey battery packs. The proliferation of this tech depends on other companies recognizing the advantage and starting to include it in their products. Even when that decision is made, it can take a couple of years for small players to implement that strategy. It may be some time until it even registers on the radar of big manufacturers. It’s really on those big guys to bring production of graphene battery packs to a scale that results in widespread adoption. We may not even notice when it happens – after all, we just see that our batteries are charging more quickly. It will be a matter of years before graphene batteries have a shot at popularity, but we’ll be keeping an eye out for them.

Graphene has been studied for years and shown tons of promise. Advances in battery tech are few and far between, so it’s exciting when they actually hit the market. While it’s great news for those of us looking for a way to top up phones, laptops, and tablets quickly, there are larger-scale applications to keep in mind. It’s easy to see how a graphene-based portable smartphone battery will eventually be developed into large-scale commercial batteries for solar and wind energy production.

Editors' Recommendations

Simon Sage
Simon has been publishing in tech since before the first iPhone was released. When he's not busy lighting a candle for the…
Decades later, inventors of lithium-ion battery win Nobel Prize in Chemistry
glass battery technology green car reports john goodenough

Few inventions have had more of an impact in shaping the modern world of high tech gadgets than the rechargeable lithium-ion battery. First developed in the 1970s, the three scientists credited with inventing this pioneering piece of technology were today awarded the 2019 Nobel Prize in Chemistry.

The recipients include 97-year-old John B. Goodenough of The University of Texas at Austin, 77-year-old M. Stanley Whittingham of Binghamton University, and 71-year-old Akira Yoshino of Japan’s Meijo University. All three contributed toward the development of lithium-ion batteries. They will share the 9 million Swedish kroner ($905,000) prize awarded by the Royal Swedish Academy of Sciences in Stockholm, Sweden.

Read more
Here’s how fast the Note 10 Plus’ battery charges compared to the competition
Note 10 Plus charging test

Most flagship smartphones can get you through a full day of regular use, and while manufacturers have managed to pack large batteries inside slim phones, expecting a comfortable two-day battery life isn't the norm. What has helped tremendously is speeding up the time it takes to charge a smartphone. Samsung has lagged behind the competition with its charging speeds for several years, but not anymore. With the new Note 10 Plus, Samsung has armed it with a 25W charger in the box for fast charging.

How does it measure to some of the most popular phones today? We pitted the Note 10 Plus against the OnePlus 7 Pro, the Galaxy S10 Plus, the Google Pixel 3 XL, and the iPhone XS Max to see which phone charges the fastest.
The phones
But first, let's break down the setup for the test and the phones. We used the included cable and adapter that comes in the box for all these devices. They were discharged to zero percent, and the test started at the same exact time for all of them. If you want a quick primer on how fast charging works, check out our explainer.

Read more
Vivo’s new charging tech rockets phone your battery to full in only 13 minutes
Vivo V15 Pro impressions

Vivo has made another leap forward in battery charging technology with the introduction of Super FlashCharge 120w, which is capable of sending enough power through to your phone’s battery cell to recharge it in only 13 minutes. The new system has been introduced at MWC Shanghai, which is currently taking place in China.

The name gives away part of the reason Super FlashCharge is so powerful -- it delivers 120w of power to compatible phones and batteries, using a specially customized USB Type-C cable, and a Super FlashCharge travel charger wall plug. The system works on 20v/6A. In its tests, Vivo says a 4,000mAh battery has been recharged from zero to 100% in only 13 minutes, with 50% coming up in an almost unfeasibly quick five minutes.

Read more