Skip to main content

2020 Nobel Prize for physics goes to pioneering black hole scientists

There’s a black hole at the center of this year’s Nobel Prize for physics. Announced Tuesday, Oxford University mathematician Roger Penrose, Max Planck Institute for Extraterrestrial Physics astronomer Reinhard Genzel, and University of California, Los Angeles astronomer Andrea Ghez will share the 114th Nobel Prize for their pioneering work on the formation of black holes, and the discovery of a giant one at the heart of the Milky Way.

Black holes are regions of spacetime in which the gravity is so strong that not even light can escape from it. The boundary from which no escape is possible from a black hole is called an event horizon. The concept of objects with such significant gravitational fields was suggested as far back as the 18th century, although it took until the 20th century until the idea was considered in more detail. Albert Einstein’s theory of general relativity, for instance, showed that gravity is capable of changing the movement of light. In the 1960s, Penrose showed that black holes could appear generically, rather than as mathematical anomalies. Before this, experts — including Einstein — suggested that black holes don’t exist in physical reality.

Genzel and Ghez, meanwhile, were honored for their work using the world’s largest telescopes to discover a supermassive object in the galaxy, called Sagittarius A*, which could only possibly be a black hole. Imaging a black hole is extremely challenging because, with no light able to get out of them, they are rendered invisible to the naked eye. They can only be observed by using space telescopes with special tools that are able to see how stars in close proximity to a black hole act differently to other stars. When a black hole is near to a star, it creates a high-energy light that can be identified under certain conditions.

“There is a major problem in physics in that we have a wonderful theory about gravity, courtesy of Albert Einstein, and then a beautiful model of everything else in nature that is not related to gravity,” Ralph Scheicher, a researcher in the Department of Physics and Astronomy at Sweden’s Uppsala University, told Digital Trends, explaining why black holes are such a source of fascination. “Both work fantastically well in that they make predictions that match experiments, but they cannot both be right. They don’t fit with each other to form one unified Theory Of Everything. And so scientists look for modifications of either theory. Because black holes are such extreme objects with unimaginably strong gravitational fields, they are a perfect testing ground to observe and test predictions from [the] General Theory of Relativity.”

Genzel and Ghez will share half of the Nobel Prize, while Penrose receives the other half. Ghez is only the fourth woman in history to receive a Nobel Prize for physics since the prize was founded in 1901. Out of more than 200 laureates, only Marie Curie, Maria Goeppert-Mayer, and Donna Strickland are other female laureates to win the physics prize.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
See the terrifying scale of a supermassive black hole in NASA visualization
Illustration of the black hole Sagittarius A* at the center of the Milky Way.

This week is black hole week, and NASA is celebrating by sharing some stunning visualizations of black holes, including a frankly disturbing visualization to help you picture just how large a supermassive black hole is. Supermassive black holes are found at the center of galaxies (including our own) and generally speaking, the bigger the galaxy, the bigger the black hole.

Illustration of the black hole Sagittarius A* at the center of the Milky Way. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/(Spaceengine) Acknowledgement: M. Zamani (NSF's NOIRLab)

Read more
Supermassive black hole spews out jet of matter in first-of-its-kind image
Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet is seen rising up from the centre of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets.

As well as pulling in anything which comes to close to them, black holes can occasionally expel matter at very high speeds. When clouds of dust and gas approach the event horizon of a black hole, some of it will fall inward, but some can be redirected outward in highly energetic bursts, resulting in dramatic jets of matter that shoot out at speeds approaching the speed of light. The jets can spread for thousands of light-years, with one jet emerging from each of the black hole's poles in a phenomenon thought to be related to the black hole's spin.

Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet of matter is seen rising up from the center of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets. S. Dagnello (NRAO/AUI/NSF)

Read more
Machine learning used to sharpen the first image of a black hole
A team of researchers, including an astronomer with NSF’s NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth. The image of the M87 supermassive black hole originally published by the EHT collaboration in 2019 (left); and a new image generated by the PRIMO algorithm using the same data set (right).

The world watched in delight when scientists revealed the first-ever image of a black hole in 2019, showing the huge black hole at the center of galaxy Messier 87. Now, that image has been refined and sharpened using machine learning techniques. The approach, called PRIMO or principal-component interferometric modeling, was developed by some of the same researchers that worked on the original Event Horizon Telescope project that took the photo of the black hole.

That image combined data from seven radio telescopes around the globe which worked together to form a virtual Earth-sized array. While that approach was amazingly effective at seeing such a distant object located 55 million light-years away, it did mean that there were some gaps in the original data. The new machine learning approach has been used to fill in those gaps, which allows for a more sharp and more precise final image.

Read more