Skip to main content

See a map of 25,000 supermassive black holes in distant galaxies

Sky map showing 25,000 supermassive black holes. Each white dot is a supermassive black hole in its own galaxy.
Sky map showing 25,000 supermassive black holes. Each white dot is a supermassive black hole in its own galaxy. LOFAR/LOL Survey

It might look like a map of stars, but that’s not what is shown in the image above. Instead, each dot on this map of the night sky represents an enormous black hole called a supermassive black hole, each in a different distant galaxy.

Astronomers know that at the heart of almost every galaxy (including our own) lies a monstrous black hole with a mass millions of times the mass of the sun. Black holes suck in everything around them and are so dense that nothing — not even light — can escape from them. However, it is still possible to observe them by looking at radio emissions. That’s how the famous first image of a black hole was captured in 2019.

A group of astronomers at Leiden University in The Netherlands used radio emissions to map out all the black holes that can be seen in a portion of the northern sky. They combined 256 hours of observations of the sky to spot the black holes.

But their task was complicated due to a shell of charged particles that surrounds the Earth, called the ionosphere, which distorts the incoming signals. “It’s similar to when you try to see the world while immersed in a swimming pool,” co-author Reinout van Weeren explained in a statement. “When you look up, the waves on the water of the pool deflect the light rays and distort the view.”

To adjust for this distortion, they created algorithms that were run on supercomputers to correct the ionosphere effect every four seconds. That allowed them to create the map above, which represents 4% of the northern sky.

“This is the result of many years of work on incredibly difficult data,” research leader Francesco de Gasperin said. “We had to invent new methods to convert the radio signals into images of the sky.”

The team hopes to continue the mapping project to cover the entire northern sky. For now, they are happy to have these results to share, as Scientific Director of the Leiden Observatory and senior author Huub Röttgering said: “After many years of software development, it is so wonderful to see that this has now really worked out.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the terrifying scale of a supermassive black hole in NASA visualization
Illustration of the black hole Sagittarius A* at the center of the Milky Way.

This week is black hole week, and NASA is celebrating by sharing some stunning visualizations of black holes, including a frankly disturbing visualization to help you picture just how large a supermassive black hole is. Supermassive black holes are found at the center of galaxies (including our own) and generally speaking, the bigger the galaxy, the bigger the black hole.

Illustration of the black hole Sagittarius A* at the center of the Milky Way. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/(Spaceengine) Acknowledgement: M. Zamani (NSF's NOIRLab)

Read more
Supermassive black hole spews out jet of matter in first-of-its-kind image
Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet is seen rising up from the centre of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets.

As well as pulling in anything which comes to close to them, black holes can occasionally expel matter at very high speeds. When clouds of dust and gas approach the event horizon of a black hole, some of it will fall inward, but some can be redirected outward in highly energetic bursts, resulting in dramatic jets of matter that shoot out at speeds approaching the speed of light. The jets can spread for thousands of light-years, with one jet emerging from each of the black hole's poles in a phenomenon thought to be related to the black hole's spin.

Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet of matter is seen rising up from the center of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets. S. Dagnello (NRAO/AUI/NSF)

Read more
Machine learning used to sharpen the first image of a black hole
A team of researchers, including an astronomer with NSF’s NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth. The image of the M87 supermassive black hole originally published by the EHT collaboration in 2019 (left); and a new image generated by the PRIMO algorithm using the same data set (right).

The world watched in delight when scientists revealed the first-ever image of a black hole in 2019, showing the huge black hole at the center of galaxy Messier 87. Now, that image has been refined and sharpened using machine learning techniques. The approach, called PRIMO or principal-component interferometric modeling, was developed by some of the same researchers that worked on the original Event Horizon Telescope project that took the photo of the black hole.

That image combined data from seven radio telescopes around the globe which worked together to form a virtual Earth-sized array. While that approach was amazingly effective at seeing such a distant object located 55 million light-years away, it did mean that there were some gaps in the original data. The new machine learning approach has been used to fill in those gaps, which allows for a more sharp and more precise final image.

Read more