Skip to main content

Time spent in space affects connectivity of astronauts’ brains, new study shows

JAXA astronaut Aki Hoshide, ISS Expedition 32 flight engineer, taking a space selfie during extravehicular activity on September 5, 2012, with the Sun behind him. NASA

We already know that spending time in space has effects on the body, and recent evidence suggests it could have an effect on the mind as well. Now, a new study has examined how long-duration space flight affects connectivity in the brain.

A team from Russia’s National Research University Laboratory for Cognitive Research used magnetic resonance imaging to look at the brains of eleven astronauts before and after they were exposed to space flight and compared them to healthy controls who did not visit space. They found that the astronauts’ brains showed adaptations to an environment without gravity.

Recommended Videos

In particular, the astronauts’ brains did not receive the usual information from the bodily systems responsible for balance due to the zero-gravity environment. Their brains compensated for this by developing what the researchers called “an auxiliary system of somatosensory control.” Essentially, they relied more on visual and tactile information to maintain balance and body position instead of the vestibular system, and this change was reflected in their brain connectivity.

Please enable Javascript to view this content

“Under Earth’s gravity, vestibular nuclei are responsible for processing signals coming from the vestibular system,” the team explained in a statement. “But in space, the brain may downweight the activity of these structures to avoid conflicting information about the environment.”

There were other differences in the astronauts’ brains as well. Deep inside each hemisphere of our brains in an area called the insular lobe which regulates homeostasis and is also linked to many other functions such as motor control and emotions like empathy. In astronauts, there was greater connectivity between the left and right insulae than in controls, and also greater connectivity between these lobes and other brain areas.

“Insular lobes, among other things, are responsible for the integration of signals coming from different sensor systems,” lead author Dr. Ekaterina Pechenkova explained in the statement. In particular, this increased connectivity was more noticeable among astronauts who had more difficulties adapting to the space environment and who experienced issues like vertigo or problems assessing the position of their bodies.

“We believe this kind of information will eventually help to better understand why it takes different lengths of time for different people to adapt to the conditions of space flight and will help to develop more effective individual training programs for space travelers,” the researchers said.

The findings are published in the journal Frontiers in Physiology.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Watch SpaceX launch a relief crew for ‘stuck’ Starliner astronauts
At 7:03 p.m. EDT, the SpaceX Falcon 9 rocket and Dragon spacecraft, carrying NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov, launched from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Friday, March 14, 2025..

Four astronauts are on their way to the International Space Station (ISS). After several delays, the members of Crew-10 lifted off in a SpaceX Dragon spacecraft using a Falcon 9 rocket from NASA's Kennedy Space Center in Florida at 7:03 p.m. ET on Saturday night. The crew includes NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov.

“Congratulations to our NASA and SpaceX teams on the 10th crew rotation mission under our commercial crew partnership. This milestone demonstrates NASA’s continued commitment to advancing American leadership in space and driving growth in our national space economy,” said NASA acting Administrator Janet Petro. “Through these missions, we are laying the foundation for future exploration, from low Earth orbit to the Moon and Mars. Our international crew will contribute to innovative science research and technology development, delivering benefits to all humanity.”

Read more
SpaceX will launch Tesla’s humanoid Optimus robot to Mars next year
Optimus Gen 2 humanoid robot by Tesla.

The year 2025 is going to be pivotal for Tesla’s humanoid robot plans, if the words of CEO Elon Musk are to be believed. But next year could mark an astronomical milestone for the company’s Optimus robot, in quite the literal sense.
Taking to X, Musk mentioned in a post that SpaceX will put an Optimus robot on Mars atop its flagship Starship rocket by the end of 2026. Just over a week ago, the Starship broke apart following a launch test, the second such failure this year.
“Starship departs for Mars at the end of next year, carrying Optimus,” Musk wrote in a post on X. “If those landings go well, then human landings may start as soon as 2029, although 2031 is more likely.”
https://x.com/elonmusk/status/1859078074303713447

This won’t be the first time Musk is making such a claim. Back in November last year, Musk mentioned that SpaceX was capable of sending “several uncrewed Starships” to the red planet within a couple of years and that the payload would include Optimus robots.
Tesla introduced a refined version of the Optimus robot at a glitzy event late in 2024. At the event, Musk told the crowd that Optimus was “the biggest product ever of any kind.” It was later reported that the robots were remotely operated by humans at the event.
Later, during the company’s Q4 2024 earnings calls, Musk shed more light on production plans, adding that the product has a revenue potential higher than $10 trillion. He also mentioned plans to manufacture thousands of humanoid robots in 2025.

Read more
Read Blue Ghost’s final message as it signs off from the moon
Blue Ghost Mission 1 - Shadow on the Moon's Surface

Firefly Aerospace’s historic Blue Ghost mission to the moon has officially ended after the lander made its last communication with the mission team on Earth.

Marking the mission’s closure, Firefly shared a message from the Blue Ghost lander, which will now sit silently on the lunar surface for the rest of time.

Read more