Skip to main content

Researchers spot clouds in the atmosphere of big, puffy exoplanet WASP-127b

Researchers have made a rare detection of clouds in the atmosphere of an exoplanet, spotting puffs of unknown composition floating above the fluffy, puffy planet WASP-127b.

Planet WASP-127b was in the news in 2018 when researchers from the Instituto de Astrofísica de Canarias (IAC) discovered it was one of the least dense exoplanets ever found and was unlike anything in our solar system.

This is an artistic simulation of WASP 127b orbiting a star.
This is an artistic simulation of WASP 127b orbiting a star. Gabriel Pérez, SMM (IAC)

The planet is a great candidate for researching exoplanet atmospheres because it is so large and “fluffy.” It is 1.3 times larger than Jupiter, but just one-fifth of its mass. And because it orbits very close to its host star, a year there lasts just four days and its surface temperature rises up to 1100 degrees Celsius. That makes it a type of planet called a “hot Saturn.”

Now, researchers have used data from the Hubble Space Telescope along with a spectroscopy instrument — the Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO) at the European Southern Observatory’s Very Large Telescope in Chile — to identify clouds that are floating in the planet’s atmosphere. They also found sodium in the atmosphere, but at a lower altitude than was expected.

“We don’t yet know the composition of the clouds, except that they are not composed of water droplets like on Earth,” said lead author Romain Allart. “We are also puzzled about why the sodium is found in an unexpected place on this planet. Future studies will help us understand not only more about the atmospheric structure but about WASP-127b, which is proving to be a fascinating place.”

There are even more oddities to WASP-127b though. Not only does it orbit in the opposite direction to its star, but it also orbits in an unusual plane rather than the typical equatorial plane.

“Such alignment is unexpected for a hot Saturn in an old stellar system and might be caused by an unknown companion,” said Allart. “All these unique characteristics make WASP-127b a planet that will be very intensely studied in the future.”

The research is published in the journal Astronomy & Astrophysics.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb peers into icy cloud to learn about exoplanet formation
This image by the NASA/ESA/CSA James Webb Space Telescope’s Near-InfraRed Camera (NIRCam) features the central region of the Chameleon I dark molecular cloud, which resides 630 light years away. The cold, wispy cloud material (blue, centre) is illuminated in the infrared by the glow of the young, outflowing protostar Ced 110 IRS 4 (orange, upper left). The light from numerous background stars, seen as orange dots behind the cloud, can be used to detect ices in the cloud, which absorb the starlight passing through them.

Here's how to build an exoplanet: You start off with a star that's surrounded by a disk of dust and gas. As the star burns and sends out gusts of stellar wind, the dust in the disk begins to interact and form into clumps. These clumps attract more dust, turning into pebbles, and then into rocks, and the gas helps these rocks stick together. They grow, picking up more and more material and clearing their orbit around the star. These are the first stage of planetary development, called planetesimals.

There's another important ingredient for growing a planet, though: ice. In the cold clouds of dust and gas, ice forms as a kind of frost on dust grains. These icy grains carry some of the key ingredients for a potentially habitable planet, like carbon, hydrogen, and oxygen. Here on Earth, it's thought that some of these ingredients could have been brought to our planet by icy comets, but in other systems, these ices could have been present as the exoplanets formed.

Read more
NASA is asking for your help to study exoplanets
Members of the public can help astronomers observe and study the night sky through NASA’s Universe of Learning Exoplanet Watch program.

With new tools like the James Webb Space Telescope, we're discovering more exoplanets than ever and even peering into their atmospheres. Now, NASA is asking for the public's help in learning more about some of the exoplanets that have already been detected in a citizen science program called Exoplanet Watch.

“With Exoplanet Watch you can learn how to observe exoplanets and do data analysis using software that actual NASA scientists use,” said Rob Zellem, the creator of Exoplanet Watch and an astrophysicist at NASA’s Jet Propulsion Laboratory, in a statement. “We’re excited to show more people how exoplanet science is really done.”

Read more
How James Webb peers into the atmospheres of far-off exoplanets
Illustration of a planet on a black background. The planet is large and rocky. Roughly two-thirds of the planet is lit, while the rest is in shadow.

We are entering a new period of exoplanet astronomy, with a recent announcement that the James Webb Space Telescope has detected its first exoplanet. The promise of Webb is that it will be able to not only spot exoplanets but also study their atmospheres, which would mark a major step forward in exoplanet science.

Studying exoplanets is extremely challenging because they are generally far too far away and too small to be observed directly. Very occasionally, a telescope is able to directly image an exoplanet, but most of the time researchers have to infer that a planet is present by looking at the star around which it orbits. There are several methods for detecting planets based on their effects on a star, but one of the most commonly used is the transit method, in which a telescope observes a star and looks for a very small dip in brightness which happens when a planet passes between the star and us. This is the method Webb used to detect its first exoplanet, named LHS 475 b.

Read more