Skip to main content

Researchers spot clouds in the atmosphere of big, puffy exoplanet WASP-127b

Researchers have made a rare detection of clouds in the atmosphere of an exoplanet, spotting puffs of unknown composition floating above the fluffy, puffy planet WASP-127b.

Planet WASP-127b was in the news in 2018 when researchers from the Instituto de Astrofísica de Canarias (IAC) discovered it was one of the least dense exoplanets ever found and was unlike anything in our solar system.

This is an artistic simulation of WASP 127b orbiting a star.
This is an artistic simulation of WASP 127b orbiting a star. Gabriel Pérez, SMM (IAC)

The planet is a great candidate for researching exoplanet atmospheres because it is so large and “fluffy.” It is 1.3 times larger than Jupiter, but just one-fifth of its mass. And because it orbits very close to its host star, a year there lasts just four days and its surface temperature rises up to 1100 degrees Celsius. That makes it a type of planet called a “hot Saturn.”

Recommended Videos

Now, researchers have used data from the Hubble Space Telescope along with a spectroscopy instrument — the Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO) at the European Southern Observatory’s Very Large Telescope in Chile — to identify clouds that are floating in the planet’s atmosphere. They also found sodium in the atmosphere, but at a lower altitude than was expected.

Please enable Javascript to view this content

“We don’t yet know the composition of the clouds, except that they are not composed of water droplets like on Earth,” said lead author Romain Allart. “We are also puzzled about why the sodium is found in an unexpected place on this planet. Future studies will help us understand not only more about the atmospheric structure but about WASP-127b, which is proving to be a fascinating place.”

There are even more oddities to WASP-127b though. Not only does it orbit in the opposite direction to its star, but it also orbits in an unusual plane rather than the typical equatorial plane.

“Such alignment is unexpected for a hot Saturn in an old stellar system and might be caused by an unknown companion,” said Allart. “All these unique characteristics make WASP-127b a planet that will be very intensely studied in the future.”

The research is published in the journal Astronomy & Astrophysics.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Exoplanet catalog details over 100 worlds beyond our solar system
TOI-1798, a system that is home to two planets. The inner planet is a strange Super-Earth so close to its star, one year on this alien world lasts only half an Earth day.

TOI-1798 is a system that is home to two planets. The inner planet is a strange Super-Earth so close to its star that one year on this alien world lasts only half an Earth day. W. M. Keck Observatory/Adam Makarenko

A new catalog of exoplanets from two telescopes shows the incredible variety of planets that exist beyond our solar system. The catalog, using data from NASA's TESS (Transiting Exoplanet Survey Satellite) space telescope and the ground-based W. M. Keck Observatory, shows 126 planets, along with the radius, mass, density and temperature of each.

Read more
James Webb telescope peers at the atmosphere of a rocky hell world
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer.

This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometers (0.015 astronomical units), completing one full orbit in less than 18 hours. NASA, ESA, CSA, R. Crawford (STScI)

When it comes to learning about exoplanets, or planets beyond our solar system, the James Webb Space Telescope is providing more information than ever before. Over the last decade or so, thousands of exoplanets have been discovered, with details available about these worlds, such as their orbits and their size or mass. But now we're starting to learn about what these planets are actually like, including details of their atmospheres. Webb recently investigated the atmosphere around exoplanet 55 Cancri e, finding what could be the first atmosphere of a rocky planet discovered outside the solar system.

Read more
James Webb observes extremely hot exoplanet with 5,000 mph winds
This artist’s concept shows what the hot gas-giant exoplanet WASP-43 b could look like. WASP-43 b is a Jupiter-sized planet circling a star roughly 280 light-years away, in the constellation Sextans. The planet orbits at a distance of about 1.3 million miles (0.014 astronomical units, or AU), completing one circuit in about 19.5 hours. Because it is so close to its star, WASP-43 b is probably tidally locked: its rotation rate and orbital period are the same, such that one side faces the star at all times.

Astronomers using the James Webb Space Telescope have modeled the weather on a distant exoplanet, revealing winds whipping around the planet at speeds of 5,000 miles per hour.

Researchers looked at exoplanet WASP-43 b, located 280 light-years away. It is a type of exoplanet called a hot Jupiter that is a similar size and mass to Jupiter, but orbits much closer to its star at just 1.3 million miles away, far closer than Mercury is to the sun. It is so close to its star that gravity holds it in place, with one side always facing the star and the other always facing out into space, so that one side (called the dayside) is burning hot and the other side (called the nightside) is much cooler. This temperature difference creates epic winds that whip around the planet's equator.

Read more