Skip to main content

Hubble demonstrates how to see exoplanet atmospheres by using lunar eclipse

The Hubble Space Telescope has demonstrated a new method which could be used to learn more about exoplanets, by observing a total lunar eclipse from space.

Astronomers thought it might be possible to test out a new detection method by experimenting with Hubble. When the Earth passes exactly between the sun and the moon in a lunar eclipse, the moon is blocked out by its shadow. A similar thing happens when an exoplanet passes between the Earth and a distant star.

So the astronomers checked whether they could determine facts about the Earth by observing the moon, using it as a mirror and seeing how it reflects sunlight. The light had passed through Earth’s atmosphere, which filters it, and by observing the reflected light from the moon they could make inferences about Earth.

astronomers using the NASA/ESA Hubble Space Telescope have measured the amount of ozone in Earth’s atmosphere
Taking advantage of a total lunar eclipse in January 2019, astronomers using the NASA/ESA Hubble Space Telescope have measured the amount of ozone in Earth’s atmosphere. This method serves as a proxy for how they will observe Earth-like planets transiting in front of other stars in search of life. Our planet’s perfect alignment with the Sun and Moon during a total lunar eclipse mimics the geometry of a transiting terrestrial planet with its star ESA/Hubble, M. Kornmesser

Using this method, they were able to detect the presence of ozone in Earth’s atmosphere, just by observing the moon. This is significant because ozone is related to the presence of life, with most of the ozone in our atmosphere created by photosynthesis and the gas playing an important part in protecting the Earth from cosmic radiation.

If this method was used to observe exoplanets, we might be able to spot ozone there as well. “Finding ozone in the spectrum of an exo-Earth would be significant because it is a photochemical byproduct of molecular oxygen, which is a byproduct of life,” Allison Youngblood of the Laboratory for Atmospheric and Space Physics, lead researcher of Hubble’s observations, explained in a statement.

Future space telescopes such as the upcoming James Webb Space Telescope could use this method to investigate the atmosphere of exoplanets including rocky Earth-like planets, something which is very hard to do with current telescopes and methods. It could even give clues to where to investigate first when searching for potentially habitable planets. For now, this study acts as a proof of the concept when looking at our own planet.

“To fully characterize exoplanets, we will ideally use a variety of techniques and wavelengths,” team member Antonio Garcia Munoz of the Technische Universität Berlin in Germany said in the statement. ”This investigation clearly highlights the benefits of the ultraviolet spectroscopy in the characterization of exoplanets. It also demonstrates the importance of testing innovative ideas and methodologies with the only habitable planet that we know of to date!”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble sees the ghostly light of lost, wandering stars
These are Hubble Space Telescope images of two massive clusters of galaxies named MOO J1014+0038 (left panel) and SPT-CL J2106-5844 (right panel). The artificially added blue color is translated from Hubble data that captured a phenomenon called intracluster light. This extremely faint glow traces a smooth distribution of light from wandering stars scattered across the cluster. Billions of years ago the stars were shed from their parent galaxies and now drift through intergalactic space.

When most people learn about the structure of the universe at school, the model is simple: planets rotate around stars, and stars cluster together in galaxies, of which there are many in the universe. You might even have learned that galaxies can often group together by the thousand in enormous galaxy clusters.

However, there are both rogue planets and rogue stars out there, that wander the universe unattached to larger structures. Recently, the Hubble Space Telescope has been used to investigate wandering stars that aren't tied to any particular galaxy -- and found that these wanderers are giving off a ghostly haze of light that can be seen in galaxy clusters.

Read more
NASA is looking for ideas on how to boost the Hubble Space Telescope
An astronaut aboard the space shuttle Atlantis captured this image of the Hubble Space Telescope on May 19, 2009.

The Hubble Space Telescope is now over 30 years old, first launched in 1990. The venerable telescope continues to produce valuable scientific data and beautiful images of space, but it won't last forever, as sooner or later its orbit will decay which would cause the telescope to break apart in Earth's atmosphere. But Hubble could keep operating for longer if its orbit were to be raised -- a complex but doable operation that NASA is now considering.

NASA is inviting private companies to submit their proposals for boosting the telescope, which would work as a demonstration of how to perform similar operations on satellites.

Read more
See a close-up of the stunning Lagoon Nebula in new Hubble image
A portion of the open cluster NGC 6530 appears as a roiling wall of smoke studded with stars in this image from the NASA/ESA Hubble Space Telescope. NGC 6530 is a collection of several thousand stars lying around 4,350 light-years from Earth in the constellation Sagittarius.

The image of the week shared by researchers working with the Hubble Space Telescope this week is a real stunner, showing the open cluster NGC 6530. This cluster of thousands of stars is shrouded in dust and makes up a small part of the huge and beautiful Lagoon Nebula.

Located 4350 light-years away in the constellation of Sagittarius, the distinctive smoke-like shapes of the cluster are formed from a cloud of interstellar dust and gas which is feeding the formation of new stars.

Read more