Skip to main content

Weirdly large ‘forbidden’ exoplanet orbits a relatively tiny star

Astronomers have discovered a “forbidden” planet that appears to be far larger than should be possible given its circumstances. A team of researchers investigated a candidate exoplanet called TOI 5205b, first identified by NASA’s Transiting Exoplanet Survey Satellite (TESS), and not only confirmed that the planet was there but also discovered that it has some baffling characteristics.

Artist's conception of a large gas giant planet orbiting a small red dwarf star called TOI-5205.
Artist’s conception of a large gas giant planet orbiting a small red dwarf star called TOI-5205. Image by Katherine Cain, courtesy of the Carnegie Institution for Science

The exoplanet orbits a type of star called an M dwarf or red dwarf. These are the most common type of stars in our galaxy and are small and cool, typically being around half as hot as our sun.

Related Videos

While it’s common to find exoplanets orbiting red dwarfs, it’s rare to find gas giants orbiting them. And in the case of the recent discovery, the gas giant exoplanet was found orbiting a low-mass M dwarf, which is unheard of. The planet is very large in comparison to its star and blocks out around 7% of the star’s light when passing in front of it.

“The host star, TOI-5205, is just about four times the size of Jupiter, yet it has somehow managed to form a Jupiter-sized planet, which is quite surprising!” said lead researcher Shubham Kanodia of the Carnegie Institution for Science in a statement.

The reason the finding is surprising is due to the way that planets form. Planets are thought to form from disks of gas and dust around stars called protoplanetary disks. But models of gas giant formation suggest that these need a core of rocky material to come together first before gas gets quickly swept up to form the planet — and that doesn’t seem to be possible in this case.

Even if all of the material in the disk around this star came together to form one planet, it still wouldn’t be enough to form a gas giant of this size — there would need to be at least five times as much material to form something this large.

“TOI-5205b’s existence stretches what we know about the disks in which these planets are born,” Kanodia said. “In the beginning, if there isn’t enough rocky material in the disk to form the initial core, then one cannot form a gas giant planet. And at the end, if the disk evaporates away before the massive core is formed, then one cannot form a gas giant planet.

“And yet TOI-5205b formed despite these guardrails. Based on our nominal current understanding of planet formation, TOI-5205b should not exist; it is a ‘forbidden’ planet.”

As for how this planet came to be, it could be that there is a lot more dust in these disks than previously thought, or that there are some aspects of planetary formation that we don’t understand yet. To learn more, the researchers suggest that the planet could be investigated using the James Webb Space Telescope — and it makes an enticing prospect because of its large transit.

The research is published in The Astronomical Journal.

Editors' Recommendations

Super-sensitive exoplanet-hunting instrument captures its first light data
James Chong, infrastructure technician at Keck Observatory, assisting with the delicate lift of the Zerodur optics bench into the observatory basement where the instrument resides.

Astronomers will soon have a new tool for hunting exoplanets, as the W. M. Keck Observatory's Keck Planet Finder (KPF) instrument recently took its first observations. KPF's "first light" observations captured data from Jupiter, demonstrating how the instrument will be able to detect planets beyond our solar system in the future.

Located at Maunakea in Hawaiʻi, the new instrument detects exoplanets using the radial velocity method. This works by observing a star and looking for a slight wobble, caused by the gravity of planets orbiting around it. This wobble changes the light coming from the star just slightly, in a way that can be used to work out the properties of the planet. The instrument measures spectra, or the wavelengths of light coming from a star, with more massive planets making bigger wobbles.

Read more
Unusual puffy exoplanet has the density of marshmallow
A gas giant exoplanet [right] with the density of a marshmallow has been detected in orbit around a cool red dwarf star [left] by the NASA-funded NEID radial-velocity instrument on the 3.5-meter WIYN Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. The planet, named TOI-3757 b, is the fluffiest gas giant planet ever discovered around this type of star.

Exoplanets come in all sorts of sizes and all sorts of densities, from solid rocky planets like Earth or Mars to super-puff planets discovered by Hubble. Now, researchers using the WIYN 3.5-meter Telescope at Kitt Peak National Observatory have identified a puffy, low-density "marshmallow" planet orbiting a cool red dwarf star. TOI-3757 b, located 580 light-years away, is the lowest-density gas giant planet ever discovered orbiting this kind of star.

Red dwarfs are the most common type of star in the galaxy and are cooler than our sun, but they can give off powerful flares of radiation that would bombard nearby planets with ultraviolet light. These flares could strip the atmosphere off a planet, so it was thought that it would be unlikely to find puffy gas giants orbiting these stars.

Read more
Heaviest element ever discovered in exoplanet atmospheres is a puzzle
This artist’s impression shows an ultra-hot exoplanet, a planet beyond our Solar System, as it is about to transit in front of its host star. When the light from the star passes through the planet’s atmosphere, it is filtered by the chemical elements and molecules in the gaseous layer. With sensitive instruments, the signatures of those elements and molecules can be observed from Earth. Using the ESPRESSO instrument of ESO’s Very Large Telescope, astronomers have found the heaviest element yet in an exoplanet's atmosphere, barium, in the two ultra-hot Jupiters WASP-76 b and WASP-121 b.

When it comes to finding habitable exoplanets, the next big challenge is not just spotting exoplanets or looking at their orbits, but getting a better understanding of what conditions there might be like by analyzing their atmospheres. New tools like the James Webb Space Telescope will allow us to peer into the atmospheres of exoplanets and see what they are composed of, which can affect the planet's surface temperature, pressure, and weather systems.

Now, astronomers using the European Southern Observatory’s Very Large Telescope (ESO’s VLT), a ground-based telescope located in Chile, have discovered the heaviest element ever in an exoplanet atmosphere. Looking at two ultra-hot gas giants called WASP-76 b and WASP-121 b, the researchers identified the element barium in their atmospheres.

Read more