Skip to main content

Weirdly large ‘forbidden’ exoplanet orbits a relatively tiny star

Astronomers have discovered a “forbidden” planet that appears to be far larger than should be possible given its circumstances. A team of researchers investigated a candidate exoplanet called TOI 5205b, first identified by NASA’s Transiting Exoplanet Survey Satellite (TESS), and not only confirmed that the planet was there but also discovered that it has some baffling characteristics.

Artist's conception of a large gas giant planet orbiting a small red dwarf star called TOI-5205.
Artist’s conception of a large gas giant planet orbiting a small red dwarf star called TOI-5205. Image by Katherine Cain, courtesy of the Carnegie Institution for Science

The exoplanet orbits a type of star called an M dwarf or red dwarf. These are the most common type of stars in our galaxy and are small and cool, typically being around half as hot as our sun.

While it’s common to find exoplanets orbiting red dwarfs, it’s rare to find gas giants orbiting them. And in the case of the recent discovery, the gas giant exoplanet was found orbiting a low-mass M dwarf, which is unheard of. The planet is very large in comparison to its star and blocks out around 7% of the star’s light when passing in front of it.

“The host star, TOI-5205, is just about four times the size of Jupiter, yet it has somehow managed to form a Jupiter-sized planet, which is quite surprising!” said lead researcher Shubham Kanodia of the Carnegie Institution for Science in a statement.

The reason the finding is surprising is due to the way that planets form. Planets are thought to form from disks of gas and dust around stars called protoplanetary disks. But models of gas giant formation suggest that these need a core of rocky material to come together first before gas gets quickly swept up to form the planet — and that doesn’t seem to be possible in this case.

Even if all of the material in the disk around this star came together to form one planet, it still wouldn’t be enough to form a gas giant of this size — there would need to be at least five times as much material to form something this large.

“TOI-5205b’s existence stretches what we know about the disks in which these planets are born,” Kanodia said. “In the beginning, if there isn’t enough rocky material in the disk to form the initial core, then one cannot form a gas giant planet. And at the end, if the disk evaporates away before the massive core is formed, then one cannot form a gas giant planet.

“And yet TOI-5205b formed despite these guardrails. Based on our nominal current understanding of planet formation, TOI-5205b should not exist; it is a ‘forbidden’ planet.”

As for how this planet came to be, it could be that there is a lot more dust in these disks than previously thought, or that there are some aspects of planetary formation that we don’t understand yet. To learn more, the researchers suggest that the planet could be investigated using the James Webb Space Telescope — and it makes an enticing prospect because of its large transit.

The research is published in The Astronomical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the weather patterns on a wild, super hot exoplanet
This is an artist’s impression of the exoplanet WASP 121-b, also known as Tylos. The exoplanet’s appearance is based on Hubble data of the object. Using Hubble observations, another team of scientists had previously reported the detection of heavy metals such as magnesium and iron escaping from the upper atmosphere of the ultra-hot Jupiter exoplanet, marking it as the first of such detection. The exoplanet is orbiting dangerously close to its host star, roughly 2.6% of the distance between Earth and the Sun, placing it on the verge of being ripped apart by its host star's tidal forces. The powerful gravitational forces have altered the planet's shape.

When it comes to understanding exoplanets, or planets outside our solar system, the big challenge is in not only finding these planets, but also understanding what they are like. And one of the biggest factors that scientists are interested in is whether an exoplanet has an atmosphere and, if so, what it is composed of. But, just like with weather here on Earth, exoplanet atmospheres aren't static. So the Hubble Space Telescope was recently used for an intriguing observation -- comparing data from an exoplanet atmosphere that had previously been observed, to see how it changed over time.

Hubble looked at planet WASP-121 b, an extreme planet that is so close to its star that a year there lasts just 30 hours. Its surface temperatures are over 3,000 Kelvins, or 5,000 degrees Fahrenheit, which researchers predict would lead to some wild weather phenomena. As it is such an extreme planet, WASP-121 b is well-known and has been observed by Hubble several times over the years, beginning in 2016.

Read more
Astronomers spot rare star system with six planets in geometric formation
Orbital geometry of HD110067: Tracing a link between two neighbour planets at regular time intervals along their orbits, creates a pattern unique to each couple. The six planets of the HD110067 system together create a mesmerising geometric pattern due to their resonance-chain.

Astronomers have discovered a rare star system in which six planets orbit around one star in an elaborate geometrical pattern due to a phenomenon called orbital resonance. Using both NASA's Transiting Exoplanet Survey Satellite (TESS) and the European Space Agency's (ESA) CHaracterising ExOPlanet Satellite (CHEOPS), the researchers have built up a picture of the beautiful, but complex HD110067 system, located 100 light-years away.

The six planets of the system orbit in a pattern whereby one planet completes three orbits while another does two, and one completes six orbits while another does one, and another does four orbits while another does three, and so one. The six planets form what is called a "resonant chain" where each is in resonance with the planets next to it.

Read more
How astronomers used James Webb to detect methane in the atmosphere of an exoplanet
An artists rendering of a blue and white exoplanet known as WASP-80 b, set on a star-studded black background. Alternating horizontal layers of cloudy white, grey and blue cover the planets surface. To the right of the planet, a rendering of the chemical methane is depicted with four hydrogen atoms bonded to a central carbon atom, representing methane within the exoplanet's atmosphere. An artist’s rendering of the warm exoplanet WASP-80 b whose color may appear bluish to human eyes due to the lack of high-altitude clouds and the presence of atmospheric methane identified by NASA’s James Webb Space Telescope, similar to the planets Uranus and Neptune in our own solar system.

One of the amazing abilities of the James Webb Space Telescope is not just detecting the presence of far-off planets, but also being able to peer into their atmospheres to see what they are composed of. With previous telescopes, this was extremely difficult to do because they lacked the powerful instruments needed for this kind of analysis, but scientists using Webb recently announced they had made a rare detection of methane in an exoplanet atmosphere.

Scientists studied the planet WASP-80 b using Webb's NIRCam instrument, which is best known as a camera but also has a slitless spectroscopy mode which allows it to split incoming light into different wavelengths. By looking at which wavelengths are missing because they have been absorbed by the target, researchers can tell what an object -- in this case, a planetary atmosphere -- is composed of.

Read more