Skip to main content

Beautiful image of young planets sheds new light on planet formation

Using data from the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, a team of researchers has been conducting a survey on protoplanetary disks — the belts of dust that eventually form planets around young stars. And the researchers have shared fascinating images of the planets from their survey, showing the various stages of planet formation.

ALMA

This image shows twenty different protoplanetary disks at various stages of planet formation, taken with the ALMA and collated by the researchers. The team were delighted by the detailed nature of the images that were available from the ALMA: “It was surprising to see possible signatures of planet formation in the very first high-resolution images of young disks,” graduate student and member of the research team Jane Huang said in a statement. “It was important to find out whether these were anomalies or if those signatures were common in disks.”

Previously, studies about planetary formation had only a small number of samples to work from, making it hard to know if observed features were typical or anomalous for early-stage planets. By using data on twenty disks, the researchers can be more statistically confident in their findings and make more useful generalizations about planet formation.

The biggest surprise finding from this survey, according to the researchers, is that large planets which are similar in size and composition to Neptune or Saturn in our Solar System do in fact form much more quickly than previously thought. In addition, these planets tend to form in the outer edges of solar systems, far away from the stars around which they orbit. This is important because it could be an answer to the question of how rocky Earth-sized planets are able to grow without being destroyed in their turbulent younger years.

The current scientific understanding is that a planet is born when dust and gas gradually collect inside a protoplanetary disk, starting off with tiny dust particles and eventually building up to larger rocks. After millions of years, this matter coalesces to form a planet. Under this understanding, it would be expected that this process would be most commonly found in older star systems. But the new ALMA data suggests otherwise: some of the protoplanetary disks that were surveyed were only around one million years old, but still showed the features that would indicate planet formation like rings and gaps. However, even with the larger sample size of twenty protoplanets available to study, more data is needed to know whether this faster planet formation is typical or is an anomaly of a few systems.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Peer inside the bar of a barred spiral galaxy in new James Webb image
A delicate tracery of dust and bright star clusters threads across this image from the NASA/ESA/CSA James Webb Space Telescope. The bright tendrils of gas and stars belong to the barred spiral galaxy NGC 5068, whose bright central bar is visible in the upper left of this image. NGC 5068 lies around 17 million light-years from Earth in the constellation Virgo.

The newest image from the James Webb Space Telescope shows a stunning display of dust and stars that form the bar of the barred spiral galaxy NCG 5068, located 17 million light-years away. Like our galaxy, the Milky Way, this galaxy has a central bar that is a more concentrated region of stars and dust compared to the arms that reach out from the galaxy's center.

The image was taken using two of Webb's instruments, the Mid-Infrared Instrument (MIRI) and the Near Infrared Camera (NIRCam). By looking in both the mid- and near-infrared wavelengths, Webb is able to pick out features like the swirls of dust and gas, as well as the stars in this region, with the bar of the galaxy glowing in the top left of the image.

Read more
Image of darkness and light shows new stars being born in Lupus 3 nebula
The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds.

A gorgeous new image of a nebular 500 light-years away gives a peek into the process of star formation.

This image from the Dark Energy Camera shows both the dark cloud of Lupus 3 and the shining bright young stars of the nebula Bernes 149. The dark cloud here is essential to the star formation process, as it is a collection of gas and dust which provides the building blocks for new stars to be born. Known as a dark nebula because of its density, Lupus 3 obscures the light of the stars behind it, giving the impression of a swath of black across the starry sky.

Read more
See the first image of Earth from a new weather-monitoring satellite
First image of the full Earth disc from the Meteosat Third Generation Imager. The first image from Meteosat Third Generation – Imager 1 (MTG-I1) reveals a level of detail about the weather over Europe and Africa not previously possible from 36 000 km above Earth. The higher-resolution images provided by the instruments on board give weather forecasters more information about the clouds cloaking much of Europe and visible in the equatorial region of Africa and the Atlantic Ocean. Sand and sediment in the waters off Italy are also visible, as well as dust or smog being carried from south Asia. This degree of detail is not possible from the instruments on the Meteosat Second Generation satellites. The image was captured at 11:50 UTC on 18 March 2023 by the Flexible Combined Imager on MTG-I1.

A recently launched weather satellite has sent back its first image of Earth, showing our planet in gorgeous detail. The European Meteosat Third Generation Imager-1 was launched in December of last year with the aim of monitoring weather conditions across Europe and Africa, and it took this image from its location 22,000 miles above the Earth's surface.

The image was taken using the high-resolution Flexible Combined Imager instrument in March 2023, showing the areas of cloud and clear skies that can be seen over the Atlantic Ocean, as well as the European and African land masses.

Read more