Skip to main content

Beautiful image of young planets sheds new light on planet formation

Using data from the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, a team of researchers has been conducting a survey on protoplanetary disks — the belts of dust that eventually form planets around young stars. And the researchers have shared fascinating images of the planets from their survey, showing the various stages of planet formation.

ALMA

This image shows twenty different protoplanetary disks at various stages of planet formation, taken with the ALMA and collated by the researchers. The team were delighted by the detailed nature of the images that were available from the ALMA: “It was surprising to see possible signatures of planet formation in the very first high-resolution images of young disks,” graduate student and member of the research team Jane Huang said in a statement. “It was important to find out whether these were anomalies or if those signatures were common in disks.”

Previously, studies about planetary formation had only a small number of samples to work from, making it hard to know if observed features were typical or anomalous for early-stage planets. By using data on twenty disks, the researchers can be more statistically confident in their findings and make more useful generalizations about planet formation.

The biggest surprise finding from this survey, according to the researchers, is that large planets which are similar in size and composition to Neptune or Saturn in our Solar System do in fact form much more quickly than previously thought. In addition, these planets tend to form in the outer edges of solar systems, far away from the stars around which they orbit. This is important because it could be an answer to the question of how rocky Earth-sized planets are able to grow without being destroyed in their turbulent younger years.

The current scientific understanding is that a planet is born when dust and gas gradually collect inside a protoplanetary disk, starting off with tiny dust particles and eventually building up to larger rocks. After millions of years, this matter coalesces to form a planet. Under this understanding, it would be expected that this process would be most commonly found in older star systems. But the new ALMA data suggests otherwise: some of the protoplanetary disks that were surveyed were only around one million years old, but still showed the features that would indicate planet formation like rings and gaps. However, even with the larger sample size of twenty protoplanets available to study, more data is needed to know whether this faster planet formation is typical or is an anomaly of a few systems.

Editors' Recommendations

The Pillars of Creation look spooky in new James Webb image
NASA’s James Webb Space Telescope’s mid-infrared view of the Pillars of Creation strikes a chilling tone. Thousands of stars that exist in this region disappear – and seemingly endless layers of gas and dust become the centerpiece.

Following on from the recent release of a stunning image of the Pillars of Creation, researchers using the James Webb Space Telescope have released another image of the pillars -- and it's a spooky one. Taken in the mid-infrared range using Webb's Mid-Infrared Instrument (MIRI), the new image shows the enormous clouds of dust that form the famous structure of the pillars.

The previous Webb image of the pillars was taken in the near-infrared range using the Near-Infrared Camera (NIRCam) and showed off the thousands of stars that glow brightly in that range. By looking at the same target in different wavelengths, astronomers can see different features and get a new view of a familiar sight.

Read more
X-ray data from Chandra gives a new view of Webb’s first images
X-rays from Chandra have been combined with infrared data from early publicly-released James Webb Space Telescope images.

This week has been a fun time for telescope team-ups, with a recent project combining data from the James Webb and Hubble Space Telescopes. There's also a second set of images that has been released that combines data from the James Webb Space Telescope and the Chandra X-ray Observatory.

The Chandra observatory, which is also a space-based telescope, looks in the X-ray wavelength to investigate phenomena like epic kilonova explosions, search for the universe's missing matter, and capture stunning images of the universe as seen in X-ray observations. It has even been used to detect a possible exoplanet in the Whirlpool galaxy. Now, it has turned its sights on the targets of James Webb's first images to show these now-famous objects in a new light.

Read more
Bright young star shoots out strange fan of material in Hubble image
A shroud of thick gas and dust surrounds a bright young star in this image from the NASA/ESA Hubble Space Telescope. Hubble’s Wide Field Camera 3 inspected a young stellar object, over 9,000 light-years away in the constellation Taurus, to help astronomers understand the earliest stages in the lives of massive stars. This object – which is known to astronomers as IRAS 05506+2414 – may be an example of an explosive event caused by the disruption of a massive young star system.

The lifecycle of stars is dramatic, from the collapsing of clouds of dust and gas under gravitational pressures to form protostars, to the explosive end of massive stars which erupt as supernovae. Massive stars heavier than our sun are particularly dramatic, eventually puffing up to become red supergiants as they come to the ends of their lives before finishing up as black holes or neutron stars. But massive stars can go through epic changes when they are in their younger years as well, as this week's image from the Hubble Space Telescope shows.

The image is of a bright, young, massive star surrounded by a stunning structure of dust and gas. The object is called IRAS 05506+2414, and is located more than 9,000 light-years away from Earth in the constellation of Taurus. And its swirling shape seems to have been created by a disruptive event in the life of this young star.

Read more