Skip to main content

Image of darkness and light shows new stars being born in Lupus 3 nebula

A gorgeous new image of a nebular 500 light-years away gives a peek into the process of star formation.

This image from the Dark Energy Camera shows both the dark cloud of Lupus 3 and the shining bright young stars of the nebula Bernes 149. The dark cloud here is essential to the star formation process, as it is a collection of gas and dust which provides the building blocks for new stars to be born. Known as a dark nebula because of its density, Lupus 3 obscures the light of the stars behind it, giving the impression of a swath of black across the starry sky.

The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds.
The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds. CTIO/NOIRLab/DOE/NSF/AURA/ T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab) Image Processing: D. de Martin & M. Zamani (NSF’s NOIRLab)

The other type of nebula shown here, Bernes 149, is a type called a reflection nebula. This is also a cloud of dust and gas, but less dense than the dark nebula. Instead of blocking out light from stars, this cloud reflects that light, making the cloud appear to glow. Unlike emission nebulae, in which the gas actually glows because it is ionized, the reflection nebula isn’t producing light of its own but is still reflecting enough light to be seen.

Within the nebulae, you can see bright points of light which are young stars. Right in the middle of the image are two close-together stars, HR 5999 and HR 6000, which are blue because of their young age. They are just 1 million years old and aren’t yet big or old enough for nuclear fusion to be occurring in their cores. That means they are not yet main sequence stars, but are instead pre-main-sequence stars that glow because of the strong gravity compressing the matter within them, warming it up.

When stars are born and are young, they give off strong stellar winds which blow away dust and gas from around them. That prevents more stars from being born nearby, which creates an equilibrium to keep the number of new stars being born in balance. Studying sites of star formation like these nebulae can help astronomers learn more about this process and about the early stages of the stellar life cycle.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
X-ray data from Chandra gives a new view of Webb’s first images
X-rays from Chandra have been combined with infrared data from early publicly-released James Webb Space Telescope images.

This week has been a fun time for telescope team-ups, with a recent project combining data from the James Webb and Hubble Space Telescopes. There's also a second set of images that has been released that combines data from the James Webb Space Telescope and the Chandra X-ray Observatory.

The Chandra observatory, which is also a space-based telescope, looks in the X-ray wavelength to investigate phenomena like epic kilonova explosions, search for the universe's missing matter, and capture stunning images of the universe as seen in X-ray observations. It has even been used to detect a possible exoplanet in the Whirlpool galaxy. Now, it has turned its sights on the targets of James Webb's first images to show these now-famous objects in a new light.

Read more
See the stunning, star-forming Lobster Nebula in Dark Energy Camera image
This image, taken by astronomers using the US Department of Energy-fabricated Dark Energy Camera on the Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory, a Program of NSF’s NOIRLab, captures the star-forming nebula NGC 6357, which is located 8000 light-years away in the direction of the constellation Scorpius. This image reveals bright, young stars surrounded by billowing clouds of dust and gas inside NGC 6357, which is also known as the Lobster Nebula.

One of the biggest mysteries in cosmology today is what exactly the universe is made up of. We know that all of the ordinary matter in the universe makes up just 5% of the total universe, with the rest being made up of theoretical constructs: 27% of the universe is dark matter, and 68% is dark energy. We know that dark matter and dark energy must exist because we see their effects, but neither has ever been measured directly.

So to learn more about dark energy, an international large-scale survey called the Dark Energy Survey was launched to map out hundreds of millions of galaxies. Between 2013 and 2019 a collaboration of researchers used a purpose-built tool called the Dark Energy Camera (DECam) on the Victor M. Blanco Telescope located in the Chilean Andes for these observations. But since the survey has come to an end, the Dark Energy Camera hasn't been idle -- it's now used for research into a variety of astronomical topics, and it was recently used to capture this stunning image of the Lobster Nebula.

Read more
See elements as colors in this galaxy where stars are being born
This week, we feature an image of the spiral galaxy NGC 4303, also known as Messier 61, which is one of the largest galactic members of the Virgo Cluster. Being a so-called starburst galaxy, it has an unusually high amount of stars being born, and has been used by astronomers as a laboratory to better understand the fascinating phenomena of star formation.

From Hubble to the James Webb Space Telescope, when you think of the tools that capture images of space some of the first examples that come to mind are likely to be space-based telescopes. These telescopes have the advantage of being above the water vapor in Earth's atmosphere which can distort readings, and allows them to look out at the universe in great detail. But there are advantages of ground-based telescopes as well, such as being able to build much larger structures and to more easily upgrade these telescopes with new instruments.

One such ground-based telescope is the European Southern Observatory (ESO)'s Very Large Telescope. As the name suggests it is indeed very large, being made up of four separate telescopes each of which has an 8.2-meter (27 feet) primary mirror and which work together to look out at space in the visible light and infrared wavelengths. On the telescope named Yepun sits an instrument called MUSE, or the Multi-Unit Spectroscopic Explorer (MUSE), which uses a technology called adaptive optics to collect high-resolution data about areas of space.

Read more