Skip to main content

Image of darkness and light shows new stars being born in Lupus 3 nebula

A gorgeous new image of a nebular 500 light-years away gives a peek into the process of star formation.

This image from the Dark Energy Camera shows both the dark cloud of Lupus 3 and the shining bright young stars of the nebula Bernes 149. The dark cloud here is essential to the star formation process, as it is a collection of gas and dust which provides the building blocks for new stars to be born. Known as a dark nebula because of its density, Lupus 3 obscures the light of the stars behind it, giving the impression of a swath of black across the starry sky.

The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds.
The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds. CTIO/NOIRLab/DOE/NSF/AURA/ T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab) Image Processing: D. de Martin & M. Zamani (NSF’s NOIRLab)

The other type of nebula shown here, Bernes 149, is a type called a reflection nebula. This is also a cloud of dust and gas, but less dense than the dark nebula. Instead of blocking out light from stars, this cloud reflects that light, making the cloud appear to glow. Unlike emission nebulae, in which the gas actually glows because it is ionized, the reflection nebula isn’t producing light of its own but is still reflecting enough light to be seen.

Within the nebulae, you can see bright points of light which are young stars. Right in the middle of the image are two close-together stars, HR 5999 and HR 6000, which are blue because of their young age. They are just 1 million years old and aren’t yet big or old enough for nuclear fusion to be occurring in their cores. That means they are not yet main sequence stars, but are instead pre-main-sequence stars that glow because of the strong gravity compressing the matter within them, warming it up.

When stars are born and are young, they give off strong stellar winds which blow away dust and gas from around them. That prevents more stars from being born nearby, which creates an equilibrium to keep the number of new stars being born in balance. Studying sites of star formation like these nebulae can help astronomers learn more about this process and about the early stages of the stellar life cycle.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
How James Webb is peering into galaxies to see stars being born
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds.

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

Read more
The Tarantula Nebula glows brightly in this week’s Hubble image
A snapshot of the Tarantula Nebula (also known as 30 Doradus) is featured in this image from the NASA/ESA Hubble Space Telescope. The Tarantula Nebula is a large star-forming region of ionized hydrogen gas that lies 161,000 light-years from Earth in the Large Magellanic Cloud, and its turbulent clouds of gas and dust appear to swirl between the region’s bright, newly formed stars.

The Hubble Space Telescope continues to capture gorgeous views of space objects thst are shared every week, the most recent of which shows a beautiful nebula.

This week's target is the Tarantula Nebula, technically known as 30 Doradus. Located over 160,000 light-years away in a satellite galaxy of the Milky Way called the Large Magellanic Cloud, this huge cloud of dust is exceptionally bright and is one of the busiest areas of star formation in nearby space. As new stars are born, they give off radiation that ionizes the hydrogen atoms around them, making the cloud of gas glow brightly.

Read more
Stars sparkle in Orion Nebula in this week’s gorgeous Hubble image
The bright variable star V 372 Orionis takes center stage in this image from the NASA/ESA Hubble Space Telescope, which has also captured a smaller companion star in the upper left of this image. Both stars lie in the Orion Nebula, a colossal region of star formation roughly 1,450 light-years from Earth.

The Hubble Space Telescope is one of the great achievements in modern astronomy, still producing stunning and scientifically valuable images after more than 30 years of operation. Each week, scientists working with Hubble share an image captured by the telescope, and this week's image shows a snippet of a famous nebula along with two bright stars.

The image shows a part of the beautiful Orion Nebula, featuring the bright star V 372 Orionis just to the lower-right of the center along with a companion star to the top-left. The Orion Nebula is located 1,450 light-years away and is famous as a stellar nursery where large numbers of new stars are born.

Read more