Skip to main content

Zoom into an incredibly detailed James Webb image of the Orion nebula

A new image from the James Webb Space Telescope shows the majesty of the gorgeous Orion nebula in tremendous detail. The European Space Agency (ESA) has shared an extremely high-resolution version of the image that you can zoom into to see the details of this stunning cloud of dust and gas which hosts sites of star formation where new stars are being born.

The full image is available to view in the ESASky application, where you can zoom in a compare images of the same target taken in different wavelengths. There’s also a very large version of the image if you want to download and pursue it at your leisure.

A short-wavelength NIRCam mosaic of the inner Orion Nebula and Trapezium Cluster.
This image shows a short-wavelength NIRCam mosaic of the inner Orion Nebula and Trapezium Cluster. It shows a region 4 light-years across, slightly less than the distance between the Sun and our nearest neighbor, Proxima Centauri. The full image on ESASky measures 21,000 x 14,351 pixels. NASA, ESA, CSA; Science leads and image processing: M. McCaughrean, S. Pearson

Also known as Messier 42, the Orion nebula is located just to the south of the Orion’s belt constellation and is one of the brightest nebulae in the sky, making it a key target for scientists studying star formation. As new stars are born, those which are young and very hot give off ultraviolet radiation which illuminates the clouds of dust and gas around them. At the heart of this nebula is a group of stars called the Trapezium Cluster, which are young and bright, some of which are up to 30 times the mass of our sun.

Recommended Videos

This image reveals some cosmic oddities as well. Scientists told the New York Times that the observations included 150 free-floating objects, some of which are in pairs. They are similar to rogue planets that don’t orbit a star, but it’s not clear how they formed within the nebula. “There’s something wrong with either our understanding of planet formation, star formation — or both,” ESA scientist Samuel Pearson told the Times, puzzling over the presence of these objects. “They shouldn’t exist.”

Please enable Javascript to view this content

The unusual objects have been named Jupiter Mass Binary Objects, or JuMBOs, and can be smaller than Jupiter but reach temperatures of over 1,000 degrees Fahrenheit. The unexpected discovery suggests there may be aspects of planetary formation that we don’t yet understand.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Creepy cosmic eyes stare out from space in Webb and Hubble image
The gruesome palette of these galaxies is owed to a mix of mid-infrared light from the NASA/ESA/CSA James Webb Space Telescope, and visible and ultraviolet light from the NASA/ESA Hubble Space Telescope. The pair grazed one another millions of years ago. The smaller spiral on the left, catalogued as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. Both have increased star formation rates. Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form. (Find these areas by looking for the bluest regions).

These sinister eyes gazing out from the depths of space star in a new Halloween-themed image, using data from both the Hubble Space Telescope and the James Webb Space Telescope. It shows a pair of galaxies, IC 2163 on the left and NGC 2207 on the right, which are creeping closer together and interacting to form a creepy-looking face.

The two galaxies aren't colliding directly into one another, as one is passing in front of the other, but they have passed close enough to light scrape by each other and leave indications. If you look closely at the galaxy on the left, you can see how its spiral arms have been pulled out into an elongated shape, likely because of its close pass to the gravity of the other nearby galaxy. The lines of bright red around the "eyes" are created by shock fronts, with material from each galaxy slamming together.

Read more
James Webb discovers a new type of exoplanet: an exotic ‘steam world’
An artist’s conception of the “steam world” GJ 9827 d, shown in the foreground in blue.

Our solar system has a wide variety of planet types, from tiny rocky Mercury to huge puffy gas giant Jupiter to distant ice giant Uranus. But beyond our own system, there are even more types of exoplanet out there, including water worlds covered in ocean and where life could potentially thrive. Now, researchers using the James Webb Space Telescope have identified a new and exotic type of planet called a steam world, which has an atmosphere almost entirely composed of water vapor.

The planet, called GJ 9827 d, was examined by the Hubble Space Telescope earlier this year and had researchers so intrigued that they wanted to go back for a closer look using Webb. They found that the planet, which is around twice the size of Earth, had a very different atmosphere from the typical hydrogen and helium that is usually seen. Instead, it was full of hot steam.

Read more
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more