Skip to main content

Zoom into an incredibly detailed James Webb image of the Orion nebula

A new image from the James Webb Space Telescope shows the majesty of the gorgeous Orion nebula in tremendous detail. The European Space Agency (ESA) has shared an extremely high-resolution version of the image that you can zoom into to see the details of this stunning cloud of dust and gas which hosts sites of star formation where new stars are being born.

The full image is available to view in the ESASky application, where you can zoom in a compare images of the same target taken in different wavelengths. There’s also a very large version of the image if you want to download and pursue it at your leisure.

A short-wavelength NIRCam mosaic of the inner Orion Nebula and Trapezium Cluster.
This image shows a short-wavelength NIRCam mosaic of the inner Orion Nebula and Trapezium Cluster. It shows a region 4 light-years across, slightly less than the distance between the Sun and our nearest neighbor, Proxima Centauri. The full image on ESASky measures 21,000 x 14,351 pixels. NASA, ESA, CSA; Science leads and image processing: M. McCaughrean, S. Pearson

Also known as Messier 42, the Orion nebula is located just to the south of the Orion’s belt constellation and is one of the brightest nebulae in the sky, making it a key target for scientists studying star formation. As new stars are born, those which are young and very hot give off ultraviolet radiation which illuminates the clouds of dust and gas around them. At the heart of this nebula is a group of stars called the Trapezium Cluster, which are young and bright, some of which are up to 30 times the mass of our sun.

This image reveals some cosmic oddities as well. Scientists told the New York Times that the observations included 150 free-floating objects, some of which are in pairs. They are similar to rogue planets that don’t orbit a star, but it’s not clear how they formed within the nebula. “There’s something wrong with either our understanding of planet formation, star formation — or both,” ESA scientist Samuel Pearson told the Times, puzzling over the presence of these objects. “They shouldn’t exist.”

The unusual objects have been named Jupiter Mass Binary Objects, or JuMBOs, and can be smaller than Jupiter but reach temperatures of over 1,000 degrees Fahrenheit. The unexpected discovery suggests there may be aspects of planetary formation that we don’t yet understand.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures a unique view of Uranus’s ring system
This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope shows the planet and its rings in new clarity. The Webb image exquisitely captures Uranus’s seasonal north polar cap, including the bright, white, inner cap and the dark lane in the bottom of the polar cap. Uranus’ dim inner and outer rings are also visible in this image, including the elusive Zeta ring—the extremely faint and diffuse ring closest to the planet.

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more
James Webb provides a second view of an exploded star
A new high-definition image from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) unveils intricate details of supernova remnant Cassiopeia A (Cas A), and shows the expanding shell of material slamming into the gas shed by the star before it exploded. The most noticeable colors in Webb’s newest image are clumps of bright orange and light pink that make up the inner shell of the supernova remnant. These tiny knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself, are only detectable by NIRCam’s exquisite resolution, and give researchers a hint at how the dying star shattered like glass when it exploded.

When massive stars run out of fuel and come to the ends of their lives, their final phase can be a massive explosion called a supernova. Although the bright flash of light from these events quickly fades, other effects are longer-lasting. As the shockwaves from these explosions travel out into space and interact with nearby dust and gas, they can sculpt beautiful objects called supernova remnants.

One such supernova remnant, Cassiopeia A, or Cas A, was recently imaged using the James Webb Space Telescope's NIRCam instrument. Located 11,000 light-years away in the constellation of Cassiopeia, it is thought to be a star that exploded 340 years ago (as seen from Earth) and it is now one of the brightest radio objects in the sky. This view shows the shell of material thrown out by the explosion interacting with the gas that the massive star gave off in its last phases of life.

Read more