Skip to main content

Hubble observes weird star system with three off-kilter, planet-forming disks

Planets form from large disks of dust and gas that collect around their host stars. Billions of years ago, our solar system would have looked like a single point of bright light coming from the sun, with a disk of matter swirling around it that eventually clumped into planets. To learn about how our solar system formed, it’s helpful to look at other systems that are currently going through this process — such as TW Hydrae, a system located 200 light-years away and turned face-on toward us, making it the perfect place to observe planetary formation.

But there’s something odd about the TW Hydrae system. In 2017, astronomers first noticed a strange shadow that was visible on the disk of dust and gas surrounding the star. While such shadows are typically from a planet formed within the disk, in this case the shadow’s shape and movement suggested it was actually from a second disk, located within the first disk and tilted at a different angle. Now, astronomers think they have spotted evidence of a third disk, with all three stacked up and creating a complex pattern of shadows.

This illustration is based on Hubble Space Telescope images of gas and dust discs encircling the young star TW Hydrae. We have an oblique view of three concentric rings of dust and gas. At the centre is the bright white glow of the central star. The reddish-coloured rings are inclined to each other and are therefore casting dark shadows across the outermost ring.
This illustration is based on NASA/ESA Hubble Space Telescope images of a gas and dust discs encircling the young star TW Hydrae. Hubble photos show shadows sweeping across the discs encircling the system. The interpretation is that these shadows are from slightly inclined inner discs that block starlight from reaching the outer disc, and therefore cast a shadow. The discs are slightly inclined to each other because of the gravitational pull of unseen planets warping the disc structure. NASA. ESA, L. Hustak (STScI)

Researchers used data from the Hubble Space Telescope collected in 2021 to observe the system, finding that the shadow was different from what they expected based on the theory of one disk casting a shadow on a second disk.

“We found out that the shadow had done something completely different,” said lead research John Debes of the Space Telescope Science Institute in a statement. “When I first looked at the data, I thought something had gone wrong with the observation because it wasn’t what I was expecting. I was flummoxed at first, and all my collaborators were like: What is going on? We really had to scratch our heads and it took us a while to actually figure out an explanation.”

They figured out that the most likely explanation for the observations is two misaligned disks within a third, larger disk. That’s a very odd setup for a planetary system. “We’ve never really seen this before on a protoplanetary disc,” said Debes. “It makes the system much more complex than we originally thought.”

It could be that there are already planets formed within each of the disks, which is what is causing the shadows. To learn more, one possibility is to use the powerful infrared vision of the James Webb Space Telescope to observe the shadows in more detail.

The research is published in The Astrophysical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble and Spitzer spot two far-off watery worlds
In this illustration super-Earth Kepler-138 d is in the foreground. To the left, the planet Kepler-138 c, and in the background the planet Kepler 138 b, seen in silhouette transiting its central star. Kepler 138 is a red dwarf star located 218 light-years away. The low density of Kepler-138 c and Kepler-138 d — which are nearly identical in size — means that they must be composed largely of water.

While we have discovered over 5,000 exoplanets to date, most of the information we have about these planets is fairly basic. Researchers typically know about a planet's mass or radius and its distance from its host star, but little more than that, making it hard to predict what these worlds are actually like. However, new tools and techniques are allowing researchers to learn more about details like a planet's density, allowing a better understanding of what these places are like.

Recently, researchers using data from the Hubble Space Telescope and Spitzer Space Telescope have identified two planets that seem to be water worlds, with oceans that are 500 times deeper than the oceans on Earth.

Read more
How the ‘hell planet’ covered in lava oceans got so close to its star
An artist’s impression of the planet Janssen (orange circle), which orbits its star so closely that its entire surface is a lava ocean that reaches temperatures of around 2,000 degrees Celsius.

Of the over 5,000 known planets outside our solar system, one of the most dramatic is 55 Cancri e. Affectionately known as the "hell planet," it orbits so close to its star that it reaches temperatures of 3,600 degrees Fahrenheit and its surface is thought to be to covered in an ocean of lava. Located 40 light-years away, the planet has been a source of fascination for its extreme conditions, and recently researchers shared a new theory for how it got so hot.

The planet orbits its star, 55 Cancri A, at a distance of 1.5 million miles which means a year there lasts less than a day here on Earth. “While the Earth completes one orbit around our sun in 365 days, the planet studied here orbits once every 17.5 hours, hugging its host star, 55 Cnc,” said study author Debra Fischer of Yale University in a statement.

Read more
Hubble reveals glow of ‘ghostly’ light around our solar system
This artist's illustration shows the location and size of a hypothetical cloud of dust surrounding our solar system. Astronomers searched through 200,000 images and made tens of thousands of measurements from Hubble Space Telescope to discover a residual background glow in the sky.

Researchers using data from the Hubble Space Telescope have made a strange discovery: a "ghostly light" surrounding our solar system. When light from stars, planets, and even the glow of starlight scattered by dust is accounted for, there's still some "extra" light observed and astronomers are trying to work out where it's coming from.

The researchers looked at 200,000 Hubble images in a project called SKYSURF, looking for any excess of light beyond that coming from know sources. And they did find a consistent, faint glow that could suggest a previously unknown structure in our solar system. One suggestion is that there could be a sphere of dust surrounding the solar system, which reflects sunlight and causes the glow.

Read more