Skip to main content

Hubble snaps an autumnal nebula glowing orange from young, hot stars

A new image from the Hubble Space Telescope shows a nebula in the gorgeous colors of autumn, just in time for leaf-changing season in the northern hemisphere. It shows a part of a nebula called Westerhout 5, located 7,000 light-years away and also known as the Soul Nebula.

It is an emission nebula, meaning that its gorgeous colors and shapes are created by gas which has become ionized by starlight from bright, hot stars. As very massive stars are born and give off large gusts of radiation and streams of particles called stellar winds, these blow away nearby material which prevents more stars from forming too close. This creates cavities within the nebula, and in between these cavities more gas is pushed together. Then more stars can form in these now denser regions.

Just in time for the fall foliage season, this image from the NASA/ESA Hubble Space Telescope features a glistening scene in red. It reveals a small region of the nebula Westerhout 5, which lies about 7,000 light-years from Earth. Suffused with bright red light, this luminous image hosts a variety of interesting features, including a free-floating Evaporating Gaseous Globule (frEGG). The frEGG in this image is the small tadpole-shaped dark region in the upper center-left. This buoyant-looking bubble is lumbered with two names – [KAG2008] globule 13 and J025838.6+604259.
Just in time for the fall foliage season, this image from the NASA/ESA Hubble Space Telescope features a glistening scene in red. It reveals a small region of the nebula Westerhout 5, which lies about 7,000 light-years from Earth. Suffused with bright red light, this luminous image hosts a variety of interesting features, including a free-floating Evaporating Gaseous Globule (frEGG). The frEGG in this image is the small tadpole-shaped dark region in the upper center-left. This buoyant-looking bubble is lumbered with two names – [KAG2008] globule 13 and J025838.6+604259. NASA's Hubble Space Telescope, ESA/Hubble, R. Sahai
One feature of note in this image is the dark region in the upper middle, which is an object called a free-floating Evaporating Gaseous Globule (frEGG). This dense pocket of gas is more resistant to the radiation which is ionizing the gas around it, creating a kind of “egg” from which new stars can be born. The best-known example of EGGs is in the famous Pillars of Creation image, also taken by Hubble, which found these pockets of denser gas that appeared as bumps on the nebula’s columns.

In this image, the EGGs are of a type called free-floating because they aren’t attached to a particular structure, but they do have a recognizable tadpole-like shape with a head and a tail. Eventually, these pockets of gas may incubate new stars as the density in the surrounding area increases and they become hotter, allowing a protostar to form inside.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The 60 best space photos of all time from Nasa, Hubble, and more
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.

We're living through a golden age of space exploration, from rovers landing on Mars to astronauts living on board the International Space Station to the most complex and capable telescopes ever devised sending back stunning images of the cosmos. With technology like the high definition cameras on the Perseverance rover and the incredible sensitive infrared detectors on the James Webb Space Telescope, we're getting new views of the world beyond our own planet every day.

Some images of space stay entrenched in the public imagination, like the famous Pale blue Dot photos from 1990. It shows Earth as seen by the Voyager spacecraft just minutes before its camera was turned off. Traveling beyond the orbit of Pluto, the image shows the view when Voyager turned back around and viewed Earth -- the tiny, almost imperceptible dot seen against the emptiness of space.

Read more
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
Hear the otherworldly sounds of interacting galaxies with this Hubble sonification
This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140.

When two different galaxies get close enough together that they begin interacting, they are sometimes given a shared name. That's the case with a newly released image from the Hubble Space Telescope that shows two galaxies, NGC 274 and NGC 275, which are together known as Arp 140. not only is there a new image of the pair, but there's also a sonification available so you can hear the image as well as see it.

This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140. NASA/ESA/R. Foley (University of California - Santa Cruz)/Processing: Gladys Kober (NASA/Catholic University of America)

Read more