Skip to main content

Hubble image shows a lonely star glowing over an irregular background galaxy

This week’s image from the Hubble Space Telescope is notable for the way it was composed as much as for the object it shows. Composed of two different exposures which have been merged, it shows the star BD+17 2217 shining over the background irregular galaxy Arp 263.

Irregular galaxies are those with irregular structures, unlike elliptical galaxies or spiral galaxies such as our Milky Way. Arp 263 is patchy and cloudy, with some areas glowing brightly due to star formation while other areas appear practically bare. Such galaxies are typically formed due to interactions with other galaxies, which can occur when a massive galaxy passes by and pulls the original galaxy out of shape. In the case of Arp 263, it is thought that it developed its irregular shape when two galaxies merged.

The bright star BD+17 2217. Arp 263 – also known as NGC 3239 in the foreground and irregular galaxy Arp 263 in the background.
The irregular galaxy Arp 263 lurks in the background of this image from the NASA/ESA Hubble Space Telescope, but the view is dominated by a stellar photobomber, the bright star BD+17 2217. Arp 263 – also known as NGC 3239 – is a patchy, irregular galaxy studded with regions of recent star formation, and astronomers believe that its ragged appearance is due to its having formed from the merger of two galaxies. It lies around 25 million light-years away in the constellation Leo. ESA/Hubble & NASA, J. Dalcanton, A. Filippenko

What is unusual about this image is the way it was created and the effect that has on the distinctive diffraction spikes coming from bright objects. These spikes of light are caused by the mirror’s geometry that Hubble uses to observe distant objects. Typically Hubble images have four diffraction spikes (compared to the six prominent diffraction spikes seen in images from the James Webb Space Telescope), but in this case, you can see eight diffraction spikes from the brightest objects. This is because two different sets of data were combined to create the image, each taken at a different angle, so you see twice as many spikes.

“The interloping foreground star, BD+17 2217, is adorned with two sets of crisscrossing diffraction spikes. The interaction of light with Hubble’s internal structure means that concentrated bright objects, such as stars, are surrounded by four prominent spikes,” Hubble scientists explain. “Since this image of BD+17 2217 was created using two sets of Hubble data, the spikes from both images surround this stellar photobomber. The spikes are at different angles because Hubble was at different orientations when it collected the two datasets.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Dramatic images show a large satellite tumbling toward Earth
ESA's ERS-2 satellite tumbling toward Earth.

An illustration of the European Space Agency's ERS-2 satellite. ESA

The European Space Agency (ESA) has shared remarkable images showing one of its satellites in what it describes as a “tumbling descent.”

Read more
Hubble spots a massive star forming amid clouds of dust and gas
This image from the NASA/ESA Hubble Space Telescope is a relatively close star-forming region known as IRAS 16562-3959.

A stunning new image from the Hubble Space Telescope shows the birth of a new, massive star at around 30 times the mass of our sun. Nestled with a nearby star-forming region called IRAS 16562-3959, the baby star is located within our galaxy and around 5,900 light-years from Earth.

You can see the sparkle of bright stars throughout the image, with the star-forming region visible as the orange-colored clouds of dust and gas stretching diagonally across the frame. These clouds are where dust and gas clump together to form knots, gradually attracting more dust and gas, growing over time to become protostars.

Read more
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more