Skip to main content

See the sparkling Terzan 12 globular cluster in new Hubble image

A new image from the Hubble Space Telescope shows a stunning field of thousands of stars, part of a globular star cluster called Terzan 12. These groups of stars are bound together by gravity, in a packed configuration that is roughly spherical. This particular cluster is located within the Milky Way, in the constellation of Sagittarius, and is around 15,000 light-years away from us here on Earth.

This colorful image of the globular star cluster Terzan 12 is a spectacular example of how dust in space affects starlight coming from background objects.
This colorful image of the globular star cluster Terzan 12 is a spectacular example of how dust in space affects starlight coming from background objects. NASA, ESA, ESA/Hubble, Roger Cohen (RU)

As Hubble scientists point out, this particular cluster is a good example of the way that dust plays an important role in astronomical investigations. To see the cluster, we need to look through clouds of dust and gas located within the Milky Way. And these can affect the observations we get of objects within our own galaxy. “This location leaves a lot of room for intervening interstellar dust particles between us and the cluster to scatter blue light, causing only the redder wavelengths to come through to Earth,” Hubble scientists explain. “The interstellar dust clouds are mottled so that different parts of the cluster look redder than other parts along our line of sight.”

Recommended Videos

The other reason that there are so many different colors of stars visible in the image is that stars change color as they age. The youngest stars are often the hottest, glowing bright blue, but the hottest blue stars visible here are actually located behind or in front of the cluster, not within it. The cluster itself contains only older stars, which cool as they get older and give off a red light.

Please enable Javascript to view this content

Global clusters are of particular interest to astronomers because they often contain these old stars. They are the oldest type of star cluster, and scientists can tell their age due to the levels of heavy elements contained within them. The early universe was made up of mostly hydrogen and helium, and elements like metals were only introduced later when they were forged within stars due to fusion. So if you see high levels of heavy elements in a star, you know that it is more recently formed. In the case of stars within the globular clusters, they often have low levels of these heavy elements, showing that they are very old.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Feast your eyes on 10 years of Hubble images of Jupiter, Saturn, Uranus, Neptune
This is a montage of NASA/ESA Hubble Space Telescope views of our solar system's four giant outer planets: Jupiter, Saturn, Uranus, and Neptune, each shown in enhanced color. The images were taken over nearly 10 years, from 2014 to 2024.

While the Hubble Space Telescope might be most famous for its images of beautiful and far-off objects like nebulae or distant galaxies, it also takes images of objects closer to home, including the planets right here in our own solar system. For the past 10 years, Hubble has been studying the outer planets in a project called OPAL (Outer Planet Atmospheres Legacy), capturing regular images of each of the four outer planets so scientists can study their changes over time.

The planets Jupiter, Saturn, Uranus, and Neptune are different in many ways from Earth, as they are gas giants and ice giants rather than rocky planets. But they do have some similar phenomena, such as weather that regularly changes, including epic events like storms that are so large they can be seen from space. Jupiter's Great Red Spot, for example, the big orange-red eye shape that is visible on most images of the planet, is an enormous storm larger than the width of the entire Earth and which has been raging for centuries.

Read more
Creepy cosmic eyes stare out from space in Webb and Hubble image
The gruesome palette of these galaxies is owed to a mix of mid-infrared light from the NASA/ESA/CSA James Webb Space Telescope, and visible and ultraviolet light from the NASA/ESA Hubble Space Telescope. The pair grazed one another millions of years ago. The smaller spiral on the left, catalogued as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. Both have increased star formation rates. Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form. (Find these areas by looking for the bluest regions).

These sinister eyes gazing out from the depths of space star in a new Halloween-themed image, using data from both the Hubble Space Telescope and the James Webb Space Telescope. It shows a pair of galaxies, IC 2163 on the left and NGC 2207 on the right, which are creeping closer together and interacting to form a creepy-looking face.

The two galaxies aren't colliding directly into one another, as one is passing in front of the other, but they have passed close enough to light scrape by each other and leave indications. If you look closely at the galaxy on the left, you can see how its spiral arms have been pulled out into an elongated shape, likely because of its close pass to the gravity of the other nearby galaxy. The lines of bright red around the "eyes" are created by shock fronts, with material from each galaxy slamming together.

Read more
Hubble captures image of a spectacular ‘stellar volcano’
Evolution of R Aquarii

A gorgeous image from the Hubble Space Telescope shows a nearby star called R Aquarii that is the site of dramatic activity: violent eruptions of matter that is thrown out into the space around it. Informally dubbed as a "stellar volcano" for the way it is throwing out matter like lava spewing from deep underground, the star makes for a stunning image, but it also holds an unexpected surprise. The star is not one single object, but two.

Known as a symbiotic variable star, it consists of a red giant and a white dwarf that orbit each other in an ongoing dance. The red giant pulses, with its temperature and brightness changing over a 390-day period. This intersects with the 44-year orbital period of the white dwarf. When the white dwarf starts to close in on the red giant, it sucks off some of its gas via gravity and builds up the disk around it until this collapses and explodes, throwing off jets of material. Then the cycle begins again.

Read more