Skip to main content

Hubble captures rare image of a supernova as it happens

When a massive star runs out of fuel and approaches the end of its life, it explodes in a huge outpouring of energy called a supernova. These events can be so bright that they outshine entire galaxies, but they don’t last for long — just the blink of an eye, in cosmic terms. It’s hard to capture the sudden brightness and fast dimming of a supernova event, because they are difficult to predict, but the Hubble Space Telescope recently managed to capture three different moments of a supernova in a single image.

“It is quite rare that a supernova can be detected at a very early stage, because that stage is really short,” said Wenlei Chen, an author of the paper, in a statement. “It only lasts for hours to a few days, and it can be easily missed even for a nearby detection. In the same exposure, we are able to see a sequence of the images—like multiple faces of a supernova.”

Five panels are shown. The larger left panel shows the portion of the galaxy cluster Abell 370 where the multiple images of the supernova appeared, which is shown in four panels labelled A through D on the right. These panels show the locations of the multiply imaged host galaxy after a supernova faded and the different colours of the cooling supernova at three different stages in its evolution.
The left panel shows the portion of Abell 370 where the multiple images of the supernova appeared, NASA, ESA, STScI, Wenlei Chen (UMN), Patrick Kelly (UMN), Hubble Frontier Fields

It was possible to see three different points in time due to a phenomenon called gravitational lensing, in which a massive object comes between us and the object being observed. If the intermediate object is massive enough, its gravity warps space, changing the view of the object behind it. That background object can appear brighter when the intermediate object acts like a magnifying glass, and it can appear at a different point in space when its light has been bent. In this case, the light from the supernova was bent along three different paths of different lengths, so the light arrived at Hubble showing three different instances.

Recommended Videos

The supernova is an extremely distant one, meaning it is ancient — it is estimated that it occurred 11 billion years ago, which is close to the start of the universe 13.8 billion years ago. This is one of the earliest supernovae observed in such detail, and because of the three different time points captured in the image, researchers were able to measure the star’s size. The star is estimated to be around 500 times larger than the sun, a type of star called a red supergiant.

The research is published in the journal Nature.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble captures a galactic hat for its birthday
Located around 30 million light-years away in the constellation Virgo, the Sombrero Galaxy is instantly recognisable. Viewed nearly edge on, the galaxy’s softly luminous bulge and sharply outlined disc resemble the rounded crown and broad brim of the Mexican hat from which the galaxy gets its name.

A newly released image from the Hubble Space Telescope shows the charming Sombrero Galaxy, named for its resemblance to the iconic Mexican hat.

The galaxy might look familiar to you, as it is a well-known one and has previously been imaged by the James Webb Space Telescope. As Webb looks in the infrared wavelength while Hubble looks primarily in the visible light portion of the spectrum, the two telescopes get different views of the same object. In this case, Webb's image of the Sombrero shows more of the interior structure of the galaxy, while Hubble's image shows the glowing cloud of dust that comprises the disk.

Read more
James Webb observes what happens when a planet is swallowed by a star
NASA’s James Webb Space Telescope’s observations of what is thought to be the first ever recorded planetary engulfment event revealed a hot accretion disk surrounding the star, with an expanding cloud of cooler dust enveloping the scene. Webb also revealed that the star did not swell to swallow the planet, but the planet’s orbit actually slowly decayed over time.

As planetary demises go, this one is pretty grisly: a planet falls closer and closer to its host star, getting hotter and hotter as it spirals inward, until it finally falls past the point of no return and is swallowed by the star in a tremendous flash of light. That's what happened in an event called ZTF SLRN-2020, and now the James Webb Space Telescope has been observing the aftermath to learn more about this rare event.

“Because this is such a novel event, we didn’t quite know what to expect when we decided to point this telescope in its direction,” said lead researcher Ryan Lau of NOIRLab, who used Webb's MIRI (Mid-Infrared Instrument) and NIRSpec (Near-Infrared Spectrograph) instruments to make observations. “With its high-resolution look in the infrared, we are learning valuable insights about the final fates of planetary systems, possibly including our own.”

Read more
Hubble is turning 35: Here are its best images from the last year
This new image showcases NGC 346, a dazzling young star cluster in the Small Magellanic Cloud.

This month sees a very special birthday: the 35th anniversary of the Hubble Space Telescope. The venerable old space telescope was launched on April 24, 1990, so now is the perfect time to celebrate this beloved instrument and the contributions it continues to make to science and our understanding of space.

Even though newer telescopes like the James Webb Space Telescope are more powerful than Hubble, it still fulfills an important role as an optical space telescope -- meaning that it looks primarily in the same wavelengths that the human eye can see. Webb looks in the infrared portion of the spectrum, so by working together the two telescopes can get a fuller view of an object than either could get on their own.

Read more