Skip to main content

Hubble snaps another gorgeous image of the Tarantula Nebula

This NASA/ESA Hubble Space Telescope image features a dusty yet sparkling scene from one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud. The Large Magellanic Cloud is a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa.
This NASA/ESA Hubble Space Telescope image features a dusty yet sparkling scene from one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud. The Large Magellanic Cloud is a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa. ESA/Hubble & NASA, C. Murray

This gorgeous new image from the Hubble Space Telescope shows a bustling nearby star forming region called the Tarantula Nebula. Given its name due to its complex, web-like internal structure, this nebula is located in a satellite galaxy of the Milky Way called the Large Magellanic Cloud and is often studied by astronomers researching star formation and evolution.

This new image shows the edges of the nebula, further out from its center. In the middle of the nebula are enormous stars that are as much as 200 times the mass of the sun, but here on the outskirts the view is calmer.

Recommended Videos

“The section of the nebula shown here features serene blue gas, brownish-orange dust patches, and a sprinkling of multicolored stars,” Hubble scientists write. “The stars within and behind the dust clouds appear redder than those that are unobscured by dust. Dust absorbs and scatters blue light more than red light, allowing more of the red light to reach our telescopes, which makes the stars appear redder than they are. This image incorporates ultraviolet and infrared light as well as visible light.

Please enable Javascript to view this content

“Using Hubble observations of dusty nebulae in the Large Magellanic Cloud and other galaxies, researchers can study these distant dust grains, helping them better understand the role that cosmic dust plays in the formation of new stars and planets.”

Hubble has previously imaged the same nebula, with an image released in 2023 and another shared in 2020. You might also recognize the name of this nebula as it was made world famous when the James Webb Space Telescope selected it as one of its early targets, taking this gorgeous image in 2022:

The Tarantula Nebula captured by the James Webb Space Telescope.
As per NASA: In this mosaic image stretching 340 light-years across, Webb’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light, including tens of thousands of never-before-seen young stars that were previously shrouded in cosmic dust. The most active region appears to sparkle with massive young stars, appearing pale blue. NASA, ESA, CSA, STScI, Webb ERO Production Team

When stars are young, they give off large amounts of radiation and glow brightly, even more so than older stars like our sun. The process of star formation happens when there is enough dense dust and gas present in one area that it forms clumps, which attract more matter over time due to gravity, eventually forming knots which become the core of young stars, called protostars.

Although there is some debate over the exact rate of star formation in the Milky Way, in general it is known that our galaxy produces far more stars compared to another nearby galaxy, the Andromeda galaxy. But the Large Magellanic Cloud, which is a much smaller galaxy, has both a high rate of star formation and is located close by, making it the ideal laboratory to study star formation. Instruments like Hubble and James Webb are revealing new information about how stars form in this busy next door galaxy.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Feast your eyes on 10 years of Hubble images of Jupiter, Saturn, Uranus, Neptune
This is a montage of NASA/ESA Hubble Space Telescope views of our solar system's four giant outer planets: Jupiter, Saturn, Uranus, and Neptune, each shown in enhanced color. The images were taken over nearly 10 years, from 2014 to 2024.

While the Hubble Space Telescope might be most famous for its images of beautiful and far-off objects like nebulae or distant galaxies, it also takes images of objects closer to home, including the planets right here in our own solar system. For the past 10 years, Hubble has been studying the outer planets in a project called OPAL (Outer Planet Atmospheres Legacy), capturing regular images of each of the four outer planets so scientists can study their changes over time.

The planets Jupiter, Saturn, Uranus, and Neptune are different in many ways from Earth, as they are gas giants and ice giants rather than rocky planets. But they do have some similar phenomena, such as weather that regularly changes, including epic events like storms that are so large they can be seen from space. Jupiter's Great Red Spot, for example, the big orange-red eye shape that is visible on most images of the planet, is an enormous storm larger than the width of the entire Earth and which has been raging for centuries.

Read more
Webb and Hubble snap the same object for two views of one galaxy
Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail.

With all the excitement over the last few years for the shiny and new James Webb Space Telescope, it's easy to forget about the grand old master of the space telescopes, Hubble. But although Webb is a successor to Hubble in some ways, with newer technology and the ability to see the universe in even greater detail, it isn't a replacement. A pair of new images shows why: with the same galaxy captured by both Webb and Hubble, you can see the different details picked out by each telescope and why having both of them together is such a great boon for scientists.

The galaxy NGC 2090 was imaged by Webb, shown above, using its MIRI and NIRCam instruments. These instruments operate in the mid-infrared and near-infrared portions of the electromagnetic spectrum respectively, which is why the arms of this galaxy appear to be glowing red. These arms are made of swirling gas and dust, and within them are compounds called polycyclic aromatic hydrocarbons that glow brightly in the infrared. The blue color in the center of the galaxy shows a region of young stars burning hot and bright.

Read more
SpaceX image captures dramatic moment during latest Starship test
Stage separation of the Starship rocket captured by an onboard camera.

SpaceX recently completed the sixth test of the Starship, the most powerful rocket ever to fly.

In the days following Tuesday’s flight, the Elon Musk-led spaceflight company has been dropping various images of the mission on social media, with one of the latest pictures showing the dramatic moment when the upper-stage Starship spacecraft separated as planned from the first-stage Super Heavy booster.

Read more