Skip to main content

See a stunning field of galaxies captured by James Webb Space Telescope

Stunning images from the James Webb Space Telescope continue to entrance, and recently the researchers using the telescope have shared a gorgeous image of a field of galaxies as part of the Webb Picture of the Month collection.

The image shows a spattering of different background galaxies, while the foreground shows bright individual stars and a bright spiral galaxy at the bottom called LEDA 2046648. Located around a billion light-years from Earth, this galaxy is relatively much closer to us than the far-off background galaxies which is why it is so prominent in the image.

Related Videos
A crowded field of galaxies throngs this Picture of the Month from the NASA/ESA/CSA James Webb Space Telescope, along with bright stars crowned with Webb’s signature six-pointed diffraction spikes. The large spiral galaxy at the base of this image is accompanied by a profusion of smaller, more distant galaxies which range from fully-fledged spirals to mere bright smudges. Named LEDA 2046648, it is situated a little over a billion light-years from Earth, in the constellation Hercules.
A crowded field of galaxies throngs this Picture of the Month from the NASA/ESA/CSA James Webb Space Telescope, along with bright stars crowned with Webb’s signature six-pointed diffraction spikes. The large spiral galaxy at the base of this image is accompanied by a profusion of smaller, more distant galaxies which range from fully-fledged spirals to mere bright smudges. ESA/Webb, NASA & CSA, A. Martel

The data for this image were collected as part of the calibration process for some of Webb’s instruments. Although instruments used in space-based telescopes are calibrated as exactly as possible while they are still on the ground, it is still necessary to perform some more refinement once the telescope is launched and is in its final orbit. In the case of Webb, its instruments continued to be calibrated for several months after its launch.

To calibrate an instrument, one method that engineers use is to point the instrument at a known target to see what data they get back and whether this data conforms with the known features of that object. Another approach is to use several instruments simultaneously and to check whether the instruments’ data correspond correctly. Both approaches were done here, as this image was collected by the NIRCam instrument during the calibration of the NIRISS instrument.

“This particular observation was part of the commissioning campaign for Webb’s Near-InfraRed Imager and Slitless Spectrograph (NIRISS),” the European Space Agency writes. “As well as performing science in its own right, NIRISS supports parallel observations with Webb’s Near-InfraRed Camera (NIRCam). NIRCam captured this galaxy-studded image while NIRISS was observing the white dwarf WD1657+343, a well-studied star. This allows astronomers to interpret and compare data from the two different instruments, and to characterize the performance of NIRISS.”

The careful calibration of Webb’s instruments is allowing the telescope to view some of the most distant galaxies ever observed, meaning it can essentially look back in time to the formation of galaxies in the early universe.

Editors' Recommendations

Hubble captures a cosmic sea monster with this image of a jellyfish galaxy
A jellyfish galaxy with trailing tentacles of stars hangs in inky blackness in this image from the NASA/ESA Hubble Space Telescope. As Jellyfish galaxies move through intergalactic space they are slowly stripped of gas, which trails behind the galaxy in tendrils illuminated by clumps of star formation. These blue tendrils are visible drifting below the core of this galaxy, and give it its jellyfish-like appearance. This particular jellyfish galaxy — known as JO201 — lies in the constellation Cetus, which is named after a sea monster from ancient Greek mythology. This sea-monster-themed constellation adds to the nautical theme of this image.

This week's image from the Hubble Space Telescope shows a special and delightful cosmic object: a jellyfish galaxy. These galaxies are named for their larger main body with tendrils that float along after them, like the sea creatures.

This particular jellyfish galaxy is called JO201, and is located in the constellation of Cetus. Appropriately for the sea theme, Cetus is a constellation named after a Greek mythological sea monster that sometimes had the body of a whale or serpent along with the head of a boar. In the image, you can see the main body of the galaxy in the center, with the trailing tendrils spreading down toward the bottom of the frame.

Read more
Roman Space Telescope will survey the sky 1,000 times faster than Hubble
NASA’s Nancy Grace Roman Space Telescope

Since its launch in 2021, the James Webb Space Telescope has been delighting space fans with its stunning views of space objects near and far. But NASA has another space telescope in the works that will be able to help answer even more of the big questions in astronomy. The Nancy Grace Roman Space Telescope, set to launch in 2027 and colloquially known as Roman, will look at vast areas of space to help cosmologists understand the universe on a large scale.

In astronomy research, it's important to be able to look both in very great detail and on a very wide scale. Telescopes like Hubble and James Webb have exceptional sensitivity, so they can look at extremely distant objects. Roman will be different, aiming to get a broad view of the sky. The image below illustrates the differences between the telescopes, showing what Roman and Hubble can capture in one go and comparing Hubble's detailed, but narrow view to Roman's much wider view.

Read more
James Webb captures an extremely distant triple-lensed supernova
This observation from the NASA/ESA/CSA James Webb Space Telescope features the massive galaxy cluster RX J2129. Due to Gravitational lensing, this observation contains three different images of the same supernova-hosting galaxy, which you can see in closer detail here. Gravitational lensing occurs when a massive celestial body causes a sufficient curvature of spacetime to bend the path of light travelling past or through it, almost like a vast lens. In this case, the lens is the galaxy cluster RX J2129, located around 3.2 billion light-years from Earth in the constellation Aquarius. Gravitational lensing can cause background objects to appear strangely distorted, as can be seen by the concentric arcs of light in the upper right of this image.

Since the start of science operations of the James Webb Space Telescope in July last year, we've been treated to a flood of images showing space targets from nebulae to deep fields. This month, Webb researchers shared a new image captured by the telescope's NIRCam instrument which shows a both gorgeous field of galaxies and an important astronomical phenomenon called gravitational lensing.

The image features a huge galaxy cluster called RX J2129, located 3.2 billion light-years away, which is acting as a magnifying glass and bending light coming from more distant galaxies behind it. That's what is causing the stretched-out shape of some of the galaxies toward the top right of the image.

Read more