Skip to main content

Spitzer Space Telescope sees cosmic bubbles forming around young stars

This cloud of gas and dust in space is full of bubbles inflated by wind and radiation from massive young stars. Each bubble is about 10 to 30 light-years across and filled with hundreds to thousands of stars. The region lies in the Milky Way galaxy, in the constellation Aquila (aka the Eagle). NASA/JPL-Caltech

Astronomers have imaged a region of the Milky Way using the Spitzer Space Telescope and have observed beautiful bubbles surrounding clusters of young stars. This region in the constellation of Aquila (The Eagle) is full of young stars, with new stars being born when dense clouds of dust and gas come together under gravitational pressure to form the core.

There are more than 30 bubbles shown in the image above, which you can see as the pockets of red and yellow. Each bubble corresponding to a cloud of thousands of stars which is 10 to 30 light-years across. It’s hard to know the exact size of the bubbles due to their distance from us, but astronomers have made estimations using previous knowledge of bubbles.

Related Videos

The bubbles are formed by stellar winds, which are bursts of energy that are generated when a star is born. These winds are composed of flows of material which is thrown out from a star when it forms, pushing away other nearby dusts and gases. Together with the light produced by stars, the stellar winds exert pressure on surrounding materials, creating a perimeter that forms the bubble.

The Spitzer Space Telescope images in the infrared light spectrum, looking for light waves that are invisible to the human eye. In the image, different wavelengths of light are represented by different colors, so the red is warm dust heated by nearby stars, green is dust and hydrocarbons, and blue is light emitted by the stars themselves. The black “veins” are streaks of dense, cold gas and dust which block out light and which are the regions most likely to form new stars.

The advantage of observing on the infrared spectrum is that Spitzer can see things that would be impossible to see in the visible light range. Visible light is easily blocked by dust, of which there is a lot around young stars. Infrared light can pass through some of the dust to reach us here on Earth, allowing us to peer deeper into the cosmos.

Editors' Recommendations

See a new star being born in stunning James Webb image
The protostar L1527, shown in this image from the NASA/ESA/CSA James Webb Space Telescope.

The James Webb Space Telescope has captured a stunning image of the birth of a new star. As dust and gas clump together and eventually collapses under the force of gravity, it becomes a protostar: the core of a new star, rotating and forming a magnetic field, throwing off material in two dramatic jets of gas.

This process is on display in this image of the cloud L1527, taken using Webb's NIRCam instrument. Looking in the infrared, this camera can capture the clouds of material given off by the protostar which would be invisible to the human eye.

Read more
See the dark pillar of the Cone Nebula captured by the Very Large Telescope
The Cone Nebula is part of a star-forming region of space, NGC 2264, about 2500 light-years away. Its pillar-like appearance is a perfect example of the shapes that can develop in giant clouds of cold molecular gas and dust, known for creating new stars. This dramatic new view of the nebula was captured with the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) instrument on ESO’s Very Large Telescope (VLT), and released on the occasion of ESO’s 60th anniversary.

A stunning image of a distant nebula has been taken using the Very Large Telescope. The Cone Nebula, located 2,700 light-years away in the constellation of Monoceros (the Unicorn), is huge in size at 7 light-years long. The Cone Nebula is next to the beautiful Christmas Tree cluster, also known as NGC 2264.

The image was shared by the European Southern Observatory (ESO) in celebration of its formation 60 years ago. ESO operates ground-based telescopes in Chile including the Very Large Telescope, the Atacama Large Millimeter Array, and the New Technology Telescope.

Read more
Astronomers find remnants of planets around 10 billion-year-old stars
Artist’s impression of the old white dwarfs WDJ2147-4035 and WDJ1922+0233 surrounded by orbiting planetary debris, which will accrete onto the stars and pollute their atmospheres. WDJ2147-4035 is extremely red and dim, while WDJ1922+0233 is unusually blue.

Far away in the depths of the Milky Way lie two small, dim stars that are in the final stage of their life. At over 10 billion years old, white dwarfs WDJ2147-4035 and WDJ1922+0233 are among the oldest stars in our galaxy, and recently, astronomers discovered something special orbiting around them: the remains of planets, making this one of the oldest known rocky planetary systems.

Astronomers used data from GAIA, the Dark Energy Survey, and the X-Shooter instrument at the European Southern Observatory to peer at this system. They identified debris from orbiting planetesimals, which are globs of dust and rock which are created during planetary formation. The researchers used spectroscopy to look at the light coming from the two white dwarf stars and break it down into different wavelengths, which can show what materials the stars and the surrounding matter are made of.

Read more