Skip to main content

Stephen Hawking believes he’s solved a huge mystery about black holes

Speaking at the KTH Royal Institute of Technology, astrophysicist Stephen Hawking announced that he may solved the Information Paradox with a new theory that explains how information can escape a black hole, reports New Scientist.

The Information Paradox is the result of two competing theories — one from quantum mechanics and one from general relativity — about the state of an object’s physical information when it encounters a black hole. Quantum mechanics predicts that the information remains intact within a black hole, while the relativity model suggests the information is destroyed due to the immense gravitational forces within a black hole. After more than four decades of debate, Hawking now proposes a third possibility in which the information remains intact because  it does not enter into the black hole, but is destroyed as part of the journey.

Recommended Videos

physicist_stephen_hawking“I propose that the information is stored not in the interior of the black hole as one might expect, but on its boundary, the event horizon,” Hawking said.

According to Hawking’s theory, the information about particles that enter a black hole is stored on the surface event horizon in the form of holograms. Hawking argues that these holograms “contain all the information that would otherwise be lost.” These particles may eventually escape the black hole, according to the principles of Hawking Radiation, which describes a way in which photons are released from a black hole as the result of random quantum fluctuations. These escaping photons pick up the physical information stored on the event horizon, but this information is returned in a useless form. This outcome, where information is stored, but also irretrievable, reconciles both sides of the Information Paradox.

His new theory is that Hawking radiation can pick up some of the information stored on the event horizon as it is emitted, providing a way for it to get out. But don’t expect to get a message from within, he said. “The information about ingoing particles is returned, but in a chaotic and useless form. This resolves the information paradox. For all practical purposes, the information is lost.”

Hawking described his theory at Tuesday’s Hawking Radiation Conference with a follow-up lecture by Cambridge Theoretical Physics Professor Malcolm Perry scheduled for Wednesday. Perry will provide additional details on this new theory with a paper from the pair expected to be released next month.

Kelly Hodgkins
Kelly's been writing online for ten years, working at Gizmodo, TUAW, and BGR among others. Living near the White Mountains of…
Biggest stellar black hole to date discovered in our galaxy
Astronomers have found the most massive stellar black hole in our galaxy, thanks to the wobbling motion it induces on a companion star. This artist’s impression shows the orbits of both the star and the black hole, dubbed Gaia BH3, around their common centre of mass. This wobbling was measured over several years with the European Space Agency’s Gaia mission. Additional data from other telescopes, including ESO’s Very Large Telescope in Chile, confirmed that the mass of this black hole is 33 times that of our Sun. The chemical composition of the companion star suggests that the black hole was formed after the collapse of a massive star with very few heavy elements, or metals, as predicted by theory.

Black holes generally come in two sizes: big and really big. As they are so dense, they are measured in terms of mass rather than size, and astronomers call these two groups of stellar mass black holes (as in, equivalent to the mass of the sun) and supermassive black holes. Why there are hardly any intermediate-mass black holes is an ongoing question in astronomy research, and the most massive stellar mass black holes known in our galaxy tend to be up to 20 times the mass of the sun. Recently, though, astronomers have discovered a much larger stellar mass black hole that weighs 33 times the mass of the sun.

Not only is this new discovery the most massive stellar black hole discovered in our galaxy to date but it is also surprisingly close to us. Located just 2,000 light-years away, it is one of the closest known black holes to Earth.

Read more
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more
Nightmare black hole is the brightest object in the universe
Artist’s impression showing the record-breaking quasar J059-4351.

A  recently discovered monster black hole feasts on so much nearby material that it's the fastest-growing of its kind on record. The beefy black hole is devouring the equivalent mass of our sun every single day, making it a record-breaker in more ways than one.

“The incredible rate of growth also means a huge release of light and heat,” said lead researcher Christian Wolf of The Australian National University in a statement. “So, this is also the most luminous known object in the universe. It’s 500 trillion times brighter than our sun.”

Read more