Skip to main content

Stephen Hawking believes he’s solved a huge mystery about black holes

stephen hawking black home hole
Image used with permission by copyright holder
Speaking at the KTH Royal Institute of Technology, astrophysicist Stephen Hawking announced that he may solved the Information Paradox with a new theory that explains how information can escape a black hole, reports New Scientist.

The Information Paradox is the result of two competing theories — one from quantum mechanics and one from general relativity — about the state of an object’s physical information when it encounters a black hole. Quantum mechanics predicts that the information remains intact within a black hole, while the relativity model suggests the information is destroyed due to the immense gravitational forces within a black hole. After more than four decades of debate, Hawking now proposes a third possibility in which the information remains intact because  it does not enter into the black hole, but is destroyed as part of the journey.

physicist_stephen_hawking“I propose that the information is stored not in the interior of the black hole as one might expect, but on its boundary, the event horizon,” Hawking said.

According to Hawking’s theory, the information about particles that enter a black hole is stored on the surface event horizon in the form of holograms. Hawking argues that these holograms “contain all the information that would otherwise be lost.” These particles may eventually escape the black hole, according to the principles of Hawking Radiation, which describes a way in which photons are released from a black hole as the result of random quantum fluctuations. These escaping photons pick up the physical information stored on the event horizon, but this information is returned in a useless form. This outcome, where information is stored, but also irretrievable, reconciles both sides of the Information Paradox.

His new theory is that Hawking radiation can pick up some of the information stored on the event horizon as it is emitted, providing a way for it to get out. But don’t expect to get a message from within, he said. “The information about ingoing particles is returned, but in a chaotic and useless form. This resolves the information paradox. For all practical purposes, the information is lost.”

Hawking described his theory at Tuesday’s Hawking Radiation Conference with a follow-up lecture by Cambridge Theoretical Physics Professor Malcolm Perry scheduled for Wednesday. Perry will provide additional details on this new theory with a paper from the pair expected to be released next month.

Editors' Recommendations

Kelly Hodgkins
Kelly's been writing online for ten years, working at Gizmodo, TUAW, and BGR among others. Living near the White Mountains of…
Hubble spots an ancient pair of supermassive black holes about to merge
This artist's concept shows the brilliant glare of two quasars residing in the cores of two galaxies that are in the chaotic process of merging. The gravitational tug-of-war between the two galaxies ignites a firestorm of star birth.

The hearts of some galaxies glow so brightly that they are given a special name: Quasars. Powered by supermassive black holes at the center of these galaxies, these regions give off tremendous amounts of light as gas falls towards the black hole and heats up, resulting in a glow as powerful as over 100 billion stars. Recently, astronomers using the Hubble Space Telescope spotted two of these quasars burning brightly in the night sky -- and they're on a collision course.

The pair of quasars, known as SDSS J0749+2255, are from some of the earliest stages of the universe when it was just 3 billion years old. The two galaxies that host the quasars are in the process of merging, and eventually, the two will come together to form one enormous galaxy.

Read more
These supermassive black holes are cozying up close together
Scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) to look deep into the heart of the pair of merging galaxies known as UGC 4211 discovered two black holes growing side by side, just 750 light-years apart. This artist’s conception shows the late-stage galaxy merger and its two central black holes. The binary black holes are the closest together ever observed in multiple wavelengths.

At the center of most galaxies lies a single monster: a supermassive black hole, with a mass millions or even billions of times that of the sun. These lonely beasts typically sit alone in the heart of galaxies, but recent research found two of these monsters nestled close together in the galaxy UGC4211.

The two supermassive black holes originated in two different galaxies which are now merging into one, located relatively close by at a distance of 500 million light-years from Earth. The pair is among the closest black hole binaries ever observed, sitting just 750 light-years apart, and was observed using the Atacama Large Millimeter/submillimeter Array (ALMA).

Read more
Listen to the spooky echoes of a black hole
The black hole in V404 Cygni is actively pulling material away from a companion star — with about half the mass of the Sun — into a disk around the invisible object. A burst of X-rays from the black hole detected in 2015 created the high-energy rings from a phenomenon known as light echoes, where light bounces off of dust clouds in between the system and Earth. In these images, X-rays from Chandra are shown, along with optical data from the Pan-STARRS telescope that depict the stars in the field of view.

As well as admiring beautiful pictures of space, you can also listen to those pictures via sonifications. These take images and translate them into eerie sounds to illustrate the wonderful and strange phenomena of our universe. NASA's latest sonification illustrates the rings of X-rays that have been observed echoing around a black hole in the V404 Cygni system.

Quick Look: 'Listen' to the Light Echoes From a Black Hole

Read more