Skip to main content

James Webb gets a stunning view of a far-off planetary system

As well as helping us learn about the earliest galaxies in the universe and taking stunning images of parts of our solar system, the James Webb Space Telescope is also letting astronomers learn more about how planets form. Although we know that planets form from disks of dust and gas around stars called protoplanetary disks, there’s still a lot we don’t know about this process, particularly about how forming planets affect the rest of the system around them.

So it was an exciting moment when astronomers recently used Webb to study an asteroid belt in another planetary system and were able to peer into the rings of dust around the star to see where planets were forming.

This image of the dusty debris disk surrounding the young star Fomalhaut is from Webb’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out to 14 billion miles (23 billion kilometers) from the star. The inner belts – which had never been seen before – were revealed by Webb for the first time.
This image of the dusty debris disk surrounding the young star Fomalhaut is from the James Webb Telescope’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out 14 billion miles from the star. The inner belts were revealed by Webb for the first time. IMAGE: NASA, ESA, CSA IMAGE PROCESSING: András Gáspár (University of Arizona), Alyssa Pagan (STScI) SCIENCE: András Gáspár (University of Arizona)

Webb was used to study to study the Fomalhaut star, located in the constellation Piscis Austrinus, which is forming planets in a manner that is similar to what happened in our solar system around 4 billion years ago. The forming planets themselves aren’t visible, but the researchers could infer their presence based on the gaps in the dusty disk. They saw three concentric disks stretching a total of 14 billion miles from the star.

“I would describe Fomalhaut as the archetype of debris disks found elsewhere in our galaxy, because it has components similar to those we have in our own planetary system,” said lead researcher András Gáspár of the University of Arizona in Tucson in a statement. “By looking at the patterns in these rings, we can actually start to make a little sketch of what a planetary system ought to look like — if we could actually take a deep enough picture to see the suspected planets.”

Astronomers had previously looked at this system with Hubble, but had only been able to see the outer ring, but with Webb’s more powerful infrared instruments, it was able to see the warm glow of the dust from the interior rings as well. That supports the idea that there are planets there, even if they can’t be seen yet.

“We definitely didn’t expect the more complex structure with the second intermediate belt and then the broader asteroid belt,” said co-author Schuyler Wolff. “That structure is very exciting because any time an astronomer sees a gap and rings in a disk, they say, ‘there could be an embedded planet shaping the rings!’”

This effect is similar to the way that Jupiter marks the end of the asteroid belt in our solar system, as small asteroids are either pushed away or absorbed into the planet. By studying distant star systems like Fomalhaut, we can learn about how our own solar system evolved.

The research is published in the journal Nature Astronomy.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb observes merging stars creating heavy elements
This image from Webb’s NIRCam (Near-Infrared Camera) instrument highlights GRB 230307A’s kilonova and its former home galaxy among their local environment of other galaxies and foreground stars. The neutron stars were kicked out of their home galaxy and travelled the distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later.

In its earliest stages, the universe was composed mostly of hydrogen and helium. All of the other, heavier elements that make up the universe around us today were created over time, and it is thought that they were created primarily within stars. Stars create heavy elements within them in the process of fusion, and when these stars reach the ends of their lives they may explode in supernovas, spreading these elements in the environment around them.

That's how heavier elements like those up to iron are created. But for the heaviest elements, the process is thought to be different. These are created not within stellar cores, but in extreme environments such as the merging of stars, when massive forces create exceedingly dense environments that forge new elements.

Read more
Researchers discover a 320-mph jet stream around Jupiter’s equator
This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In this image, brightness indicates high altitude. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks.

The James Webb Space Telescope might be best known for its study of extremely distant galaxies, but it is also used for research on targets closer to home, like planets within our solar system. Last year, the telescope captured a stunning image of Jupiter as seen in the infrared wavelength, and now scientists who have been working on this data have published some of their findings about the planet -- including a brand-new feature that they identified in its atmosphere.

This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

Read more
James Webb captures a gorgeous stellar nursery in nearby dwarf galaxy
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. This image includes 7.7-micron light shown in blue, 10 microns in cyan, 11.3 microns in green, 15 microns in yellow, and 21 microns in red (770W, 1000W, 1130W, 1500W, and 2100W filters, respectively).

A gorgeous new image from the James Webb Space Telescope shows a stunning sight from one of our galactic neighbors. The image shows a region of star formation called NGC 346, where new stars are being born. It's located in the Small Magellanic Cloud, a dwarf galaxy that is a satellite galaxy to the Milky Way.

The star-forming region of the Small Magellanic Cloud (SMC) was previously imaged by the Hubble Space Telescope in 2005, but this new image gives a different view as it is taken in the infrared wavelength by Webb instead of the optical light wavelength used by Hubble.

Read more