Skip to main content

James Webb gets a stunning view of a far-off planetary system

As well as helping us learn about the earliest galaxies in the universe and taking stunning images of parts of our solar system, the James Webb Space Telescope is also letting astronomers learn more about how planets form. Although we know that planets form from disks of dust and gas around stars called protoplanetary disks, there’s still a lot we don’t know about this process, particularly about how forming planets affect the rest of the system around them.

So it was an exciting moment when astronomers recently used Webb to study an asteroid belt in another planetary system and were able to peer into the rings of dust around the star to see where planets were forming.

This image of the dusty debris disk surrounding the young star Fomalhaut is from Webb’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out to 14 billion miles (23 billion kilometers) from the star. The inner belts – which had never been seen before – were revealed by Webb for the first time.
This image of the dusty debris disk surrounding the young star Fomalhaut is from the James Webb Telescope’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out 14 billion miles from the star. The inner belts were revealed by Webb for the first time. IMAGE: NASA, ESA, CSA IMAGE PROCESSING: András Gáspár (University of Arizona), Alyssa Pagan (STScI) SCIENCE: András Gáspár (University of Arizona)

Webb was used to study to study the Fomalhaut star, located in the constellation Piscis Austrinus, which is forming planets in a manner that is similar to what happened in our solar system around 4 billion years ago. The forming planets themselves aren’t visible, but the researchers could infer their presence based on the gaps in the dusty disk. They saw three concentric disks stretching a total of 14 billion miles from the star.

Recommended Videos

“I would describe Fomalhaut as the archetype of debris disks found elsewhere in our galaxy, because it has components similar to those we have in our own planetary system,” said lead researcher András Gáspár of the University of Arizona in Tucson in a statement. “By looking at the patterns in these rings, we can actually start to make a little sketch of what a planetary system ought to look like — if we could actually take a deep enough picture to see the suspected planets.”

Astronomers had previously looked at this system with Hubble, but had only been able to see the outer ring, but with Webb’s more powerful infrared instruments, it was able to see the warm glow of the dust from the interior rings as well. That supports the idea that there are planets there, even if they can’t be seen yet.

“We definitely didn’t expect the more complex structure with the second intermediate belt and then the broader asteroid belt,” said co-author Schuyler Wolff. “That structure is very exciting because any time an astronomer sees a gap and rings in a disk, they say, ‘there could be an embedded planet shaping the rings!’”

This effect is similar to the way that Jupiter marks the end of the asteroid belt in our solar system, as small asteroids are either pushed away or absorbed into the planet. By studying distant star systems like Fomalhaut, we can learn about how our own solar system evolved.

The research is published in the journal Nature Astronomy.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
See a stunning view of a eclipse in space captured by the Blue Ghost mission
Rendering of the Blue Ghost on the moon's surface.

Firefly Aerospace's Blue Ghost mission, launched earlier this month on a mission to the moon, has captured stunning video of the Earth eclipsing the sun as seen from space. The Blue Ghost lander is currently in orbit around the Earth, adjusting its trajectory so it can head toward the moon over the next several weeks. And while it is there, it has been collecting data using its science instruments and testing out its communication system.

"5 days into our mission and we've traveled 220,000 miles while downlinking 1.4 GB of data!" Firefly announced earlier this week. "There's a long road ahead, but our #GhostRiders have already accomplished so much!"

Read more
James Webb spots ancient Spiderweb cluster that’s 10 billion years old
This image shows the Spiderweb protocluster as seen by Webb’s NIRCam (Near-InfraRed Camera).

A new image from the James Webb Space Telescope shows thousands of glittering galaxies that it spied by peering through clouds of dust and using its infrared instruments to reveal what lies beneath. In the center of the image is the Spiderweb protocluster, which is a group of galaxies in the early stages of forming a "cosmic city."

The light from the Spiderweb has been traveling for an astonishing 10 billion years to reach us, so looking at it is like looking back in time to the early stages of the universe. Astronomers are interested in studying this cluster of over 100 galaxies interacting together because it shows how galaxies clumped together to form groups when the universe was still young.

Read more
Webb and Hubble snap the same object for two views of one galaxy
Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail.

With all the excitement over the last few years for the shiny and new James Webb Space Telescope, it's easy to forget about the grand old master of the space telescopes, Hubble. But although Webb is a successor to Hubble in some ways, with newer technology and the ability to see the universe in even greater detail, it isn't a replacement. A pair of new images shows why: with the same galaxy captured by both Webb and Hubble, you can see the different details picked out by each telescope and why having both of them together is such a great boon for scientists.

The galaxy NGC 2090 was imaged by Webb, shown above, using its MIRI and NIRCam instruments. These instruments operate in the mid-infrared and near-infrared portions of the electromagnetic spectrum respectively, which is why the arms of this galaxy appear to be glowing red. These arms are made of swirling gas and dust, and within them are compounds called polycyclic aromatic hydrocarbons that glow brightly in the infrared. The blue color in the center of the galaxy shows a region of young stars burning hot and bright.

Read more