Skip to main content

James Webb gets a stunning view of a far-off planetary system

As well as helping us learn about the earliest galaxies in the universe and taking stunning images of parts of our solar system, the James Webb Space Telescope is also letting astronomers learn more about how planets form. Although we know that planets form from disks of dust and gas around stars called protoplanetary disks, there’s still a lot we don’t know about this process, particularly about how forming planets affect the rest of the system around them.

So it was an exciting moment when astronomers recently used Webb to study an asteroid belt in another planetary system and were able to peer into the rings of dust around the star to see where planets were forming.

This image of the dusty debris disk surrounding the young star Fomalhaut is from Webb’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out to 14 billion miles (23 billion kilometers) from the star. The inner belts – which had never been seen before – were revealed by Webb for the first time.
This image of the dusty debris disk surrounding the young star Fomalhaut is from the James Webb Telescope’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out 14 billion miles from the star. The inner belts were revealed by Webb for the first time. IMAGE: NASA, ESA, CSA IMAGE PROCESSING: András Gáspár (University of Arizona), Alyssa Pagan (STScI) SCIENCE: András Gáspár (University of Arizona)

Webb was used to study to study the Fomalhaut star, located in the constellation Piscis Austrinus, which is forming planets in a manner that is similar to what happened in our solar system around 4 billion years ago. The forming planets themselves aren’t visible, but the researchers could infer their presence based on the gaps in the dusty disk. They saw three concentric disks stretching a total of 14 billion miles from the star.

“I would describe Fomalhaut as the archetype of debris disks found elsewhere in our galaxy, because it has components similar to those we have in our own planetary system,” said lead researcher András Gáspár of the University of Arizona in Tucson in a statement. “By looking at the patterns in these rings, we can actually start to make a little sketch of what a planetary system ought to look like — if we could actually take a deep enough picture to see the suspected planets.”

Astronomers had previously looked at this system with Hubble, but had only been able to see the outer ring, but with Webb’s more powerful infrared instruments, it was able to see the warm glow of the dust from the interior rings as well. That supports the idea that there are planets there, even if they can’t be seen yet.

“We definitely didn’t expect the more complex structure with the second intermediate belt and then the broader asteroid belt,” said co-author Schuyler Wolff. “That structure is very exciting because any time an astronomer sees a gap and rings in a disk, they say, ‘there could be an embedded planet shaping the rings!’”

This effect is similar to the way that Jupiter marks the end of the asteroid belt in our solar system, as small asteroids are either pushed away or absorbed into the planet. By studying distant star systems like Fomalhaut, we can learn about how our own solar system evolved.

The research is published in the journal Nature Astronomy.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures stunning image of supernova remnant Cassiopeia A
Cassiopeia A (Cas A) is a supernova remnant located about 11,000 light-years from Earth in the constellation Cassiopeia. It spans approximately 10 light-years. This new image uses data from Webb’s Mid-Infrared Instrument (MIRI) to reveal Cas A in a new light.

A stunning new image from the James Webb Space Telescope shows a famous supernova remnant called Cassiopeia A, or Cas A. When a massive star comes to the end of its life and explodes in a huge outpouring of light and energy called a supernova, it leaves behind a dense core that can become a black hole or a neutron star. But that's not all that remains after a supernova: the explosion can leave its mark on nearby clouds of dust and gas that are formed into intricate structures.

The image of Cas A was taken using Webb's MIRI instrument, which looks in the mid-infrared range. Located 11,000 light-years away, Cassiopeia A is one of the brightest objects in the sky in the radio wavelength, and is also visible in the optical, infrared, and X-ray wavelengths. To see the different features picked up in different wavelengths, you can look at the slider comparison of the Webb infrared image alongside a Hubble visible light image of the same object.

Read more
James Webb captures the rarely-seen rings around Uranus
This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) on 6 February 2023, reveals stunning views of the planet’s rings. The planet displays a blue hue in this representative-colour image, made by combining data from two filters (F140M, F300M) at 1.4 and 3.0 microns, shown here as blue and orange, respectively.

The James Webb Space Telescope spends much of its time peering out into distant regions of space searching for some of the earliest galaxies to exist, but it also occasionally turns its sights onto targets a little closer to home. Following up on its image of Neptune released last year, astronomers using Webb have just released a brand-new image of Uranus as you've never seen it before.

As Webb looks in the infrared wavelength, unlike telescopes like Hubble which look in the visible light spectrum, its image of Uranus picks out some features of the planet which are hard to see otherwise like its dusty rings. Uranus' rings are almost invisible in the optical wavelength, but in this new image, they stand out proudly.

Read more
James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere
This illustration conceptualises the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day.

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities -- like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

Read more