Skip to main content

Continuous wave Doppler lidar instantly detects the speed of other vehicles

Blackmore Promo

Blackmore Sensors and Analytics reported its automotive Doppler lidar system for self-driving cars surpassed expectations in real-world tests in San Francisco’s congested streets and on Bay Area highways.

Recommended Videos

Backed by more than a decade of testing with the U.S. military and supported by investments from BMW i Ventures and Toyota AI Ventures, the Blackmore system has the potential to make autonomous cars much safer than radar or conventional pulsed lidar sensor systems.

“Blackmore’s team is on a mission to make automated driving safer by leveraging FMCW technology to bring Doppler capabilities to the lidar market, a potential game-changer for the autonomous mobility market,” said Jim Adler, managing director of Toyota AI Ventures.

There is no such thing as “too safe” with autonomous vehicles. Any time a self-driving car is involved in an accident, the bar rises for greater safety assurances. Human factors matter when drivers are supposed to be alert to take the wheel when needed, and self-driving algorithms must be fast and accurate, but without timely and precise sensor data, attentive humans and ingenious algorithms won’t keep our roadways safe.

Blackmore uses frequency-modulated continuous wave (FMCW) lidar. Lidar measures distance and speed by bouncing light waves off objects. Lidar is more accurate and faster than radar, which bounces radio waves, but radar has no moving parts and is less expensive than lidar. New developments in solid-state lidar, however, have reduced cost and size. The first autonomous vehicle sensor systems used radar in combination with cameras. Today most car autonomy experts think systems with lidar are required for full autonomy, typically in sensor systems that include lidar, radar, and cameras.

But all lidar is not alike. There are key differences between pulsed and continuous waves which are significant for autonomous driving. Specifically, measuring speed by calculating multiple pulse bounces is slower and more error-prone than detecting the Doppler effect frequency change with continuous waves.

“Traditional pulsed lidar systems do not measure motion directly, meaning velocity information is only available after running computationally complex and error-prone analytics algorithms on multiple frames of data,” according to Blackmore’s news release.

Pulsed lidar is a more mature technology, but FMCW lidar can detect Doppler frequency shifts for near instant velocity or speed detection. Doppler shifts aren’t a new discovery. Austrian physicist Christian Doppler first described the effect named after him in 1842. The Doppler shift, or Doppler effect, is the frequency change measured by wavelength when objects move closer or farther away. Wave frequency increases as objects get closer, and the frequency decreases as objects get further away.

“Engineers with leading autonomous driving teams are ecstatic to see Blackmore’s Doppler lidar in action,” said Randy Reibel, Blackmore’s CEO. “They understand the value of Blackmore’s unprecedented approach and are excited to tap into a system that is economically efficient, reliable, and scalable, without compromise.”

Bruce Brown
Bruce Brown Contributing Editor   As a Contributing Editor to the Auto teams at Digital Trends and TheManual.com, Bruce…
This week in EV tech: Audi exemplifies auto industry’s EV holding pattern
Close-up of 2025 Audi SQ5 grille, headlight, and badge.

The road to the future runs through the present, and it’s not a straight line. This week, we’re focusing on how Audi is negotiating the twists and turns on the way to an electrified future. EVs are here to stay at Audi, but a gasoline crossover SUV is still the automaker’s bestselling model, and it’s not ready to risk those sales just yet. That’s why the 2025 Audi Q5 received a top-to-bottom overhaul for this model year, bringing its tech features and styling up to date without altering the what has proven to be a very popular package. By maintaining parallel lineups of electric and internal-combustion cars, Audi hopes to give customers more choices. But that doesn’t completely level the playing field. The new Q5 may have yesterday’s powertrain, but Audi isn’t holding back on tech. It features the same electrical architecture, operating system, and three-screen dashboard display as the latest Audi EVs, like the Q6 e-tron. So aside from a little engine noise, there’s little difference in what you can see and interact with from the driver’s seat. It’s not just the infotainment systems. The Q5 and Q6 e-tron are close in size, with similar space for passengers across their two rows of seats. The Q6 e-tron has a bit more cargo space, but not as much as you’d think given the lack of a bulky engine, transmission, and driveshafts. The two SUVs also have similar styling but, having now driven both, we can say that the Q5 is the more pleasant of the two.

More than a difference of powertrain tech

Read more
Take a peek inside the factory making tomorrow’s ride
A Zoox robotaxi.

Amazon-owned Zoox has opened its first facility producing fully autonomous robotaxis. 

A video (above) released by the California-based company offers a peek inside the factory, which, when it reaches full capacity, could roll out as many as 10,000 autonomous vehicles per year.

Read more
The week in EV tech: 900 miles, 12 minutes—EV charging just hit warp speed
byd 900 miles 12 minutes seal

Welcome to Digital Trends’ weekly recap of the revolutionary technology powering, connecting, and now driving next-gen electric vehicles. 
If you’re hesitant about electric vehicles (EV), it’s likely that your top concerns include how far you can drive in a single charge, how long it takes to charge the battery, and how much this advanced tech will cost you. And you're not alone.
According to Deloitte’s 2025 Global Automotive Consumer Study, nearly half of U.S. consumers (49%) still say that available battery driving range is their biggest worry about EVs. That’s followed closely by the time required to charge (46%) and the lingering cost premium (44%) associated with battery electric vehicles.
But that narrative may finally be flipping. Just this past week, two developments showcase how much EV technology has evolved over the past decade: China’s BYD is breaking new grounds on just how far you can drive an EV on a single 12-minute charge. Meanwhile, the Nissan Leaf, seen as the first mass-market EV in 2010, is getting an impressive upgrade even as it remains one of the most affordable options on the market.

BYD’s bold battery bet
Chinese auto giant BYD, already the world’s top-selling EV manufacturer, may have just redrawn the limits of battery performance. According to Chinese media, and other reports, the company is testing a new solid-state battery that can add 900 miles of range in just 12 minutes of charging.
Let that sink in. That’s nearly four times the range of many current EVs—enough to drive from New York to Chicago —and charging that’s as fast as a coffee stop.

Read more