Skip to main content

IBM and the University of Maryland's quantum computers go head to head

We’re closer to a large-scale universal quantum computer than ever before, but there is still some debate among experts as to which implementation of the technology has the most potential. For the first time, two promising systems have been put head to head to see which could tear through the same set of algorithms the quickest.

The two quantum computers were fielded by the University of Maryland and IBM. Both are outfitted with a total of five qubits, but IBM’s implementation relies on superconducting metals, whereas the University of Maryland’s system uses electromagnetic fields to trap ytterbium ions, according to a report from the MIT Technology Review.

Recommended Videos

Despite the vast differences between the two pieces of hardware, both process algorithms the same way, which facilitated like-for-like testing. Since May, IBM has allowed students and enthusiasts to experiment with its quantum computer via the IBM Quantum Experience, which was used in this experiment.

The results of the head-to-head test indicated that while IBM’s system was able to process problems more quickly, the University of Maryland’s hardware was more reliable. That’s because the college’s quantum computer uses interconnected qubits, which are capable of sharing information with one another. IBM’s rig exchanges information using a central hub, and the process can apparently cause the delicate quantum states that are essential to quantum computing to collapse.

These results aren’t likely to have a huge impact on the future of quantum computing. However, the fact that two quantum computers can be compared in this way serves as resounding confirmation of the progress that has been made in this field in recent years.

It’s not yet clear whether superconducting metals, trapped ions, or a different idea entirely will lead to the creation of a large-scale universal quantum computer. However, if it’s possible to compare one system with another, researchers are better equipped to make decisions about what works and what does not. We may still be a way off the breakthrough that makes the practical implementation of quantum computing a reality, but work like this shows that forward progress is being made all the time.

Brad Jones
Former Digital Trends Contributor
Brad is an English-born writer currently splitting his time between Edinburgh and Pennsylvania. You can find him on Twitter…
Researchers create ‘missing jigsaw piece’ in development of quantum computing
Spin qubit device being connected to circuit board in preparation for measurement.

Spin qubit device being connected to circuit board in preparation for measurement. Serwan Asaad

The promise of quantum computing is incredible, allowing huge leaps in the speed and efficiency of computation. However, even though the idea has been around for decades, putting the concept into practice is a massive engineering challenge. Now, researchers from the University of South Wales Sydney say they have made a leap forward and found the "missing jigsaw piece" to improve the architecture of quantum computing chips.

Read more
Google shows off its amazing new Quantum A.I. Campus
Quantum

Google is looking to the future with its work on quantum computing, next-generation computer architecture that abides by the rules of quantum, rather than classical, mechanics. This allows for the possibility of unimaginable densities of information to be both stored and manipulated, opening up some game-changing possibilities for the future of computing as we know it.

At Tuesday’s Google I/O event, the search giant announced its new Quantum A.I. Campus, a Santa Barbara, California, facility which will advance Google’s (apparently considerable) quantum ambitions. The campus includes Google’s inaugural quantum data center, quantum hardware research laboratories, and quantum processor chip fabrication facilities.

Read more
IBM president confirms that the chip shortage will last ‘a few years’ more
CPU Computer Chip being put in place with tweezers.

In an interview with the BBC, IBM president Jim Whitehurst warned that the chip shortage could last “a few years” longer. The quote echoes similar claims made by Nvidia and Intel, which have seen firsthand the disruption of supply chains brought on by COVID-19.

Even with an uptick in vaccinations and a sense of normalcy returning to parts of the world, things will remain in flux for the semiconductor industry for at least a few years. “There's just a big lag between from when a technology is developed and when [a fabrication plant] goes into construction and when chips come out,” Whitehurst explained.

Read more