Skip to main content

Science says waste beer could help us live on Mars

From beer to windows

Any project that starts with beer and ends with colonizing Mars has our attention. At its highest level, that describes new research coming out of the University of Colorado at Boulder — where scientists have developed a new super-insulating gel, created from beer waste, which could one day prove useful for building greenhouse-like habitats for Mars colonists.

“The Smalyukh Research Group at the University of Colorado Boulder has developed a super-insulating, ultra-light, and ultra-transparent aerogel film,” Ivan Smalyukh, a professor in the Department of Physics, told Digital Trends. “Aerogels are extremely porous solid objects that are made mostly from air, and are about 100 times less dense than glass panes. Our aerogel is made from nanocellulose, which is grown by bacteria that eat waste beer wort, a waste byproduct of the beer industry.”

The cellulose enables the researchers’ aerogel to be very flexible and durable. It can be produced very cheaply, and means the team can precisely control the individual size of particles which make up its solid structure. This lets the material allow light to pass through it without significant scattering.

“Our immediate real world use-case is to use our aerogel product to dramatically increase the efficiency of windows in homes and commercial buildings,” Andrew Hess, another researcher on the project, told us. “Replacing inefficient windows is a costly and difficult endeavor, especially for buildings with structural or historical constraints. We aim to commercialize a peel-and-stick retrofitting aerogel film for windows which will effectively turn single-pane into double-pane windows — all at an affordable cost well below that of replacing the windows.”

However, the team also has more far-flung ambitions for their research. The project was recently named one of the winners of NASA’s 2018 iTech competition, which aims to reward technologies that could one day be used to help people travel to space.

“Extraterrestrial habitats will face extreme temperature fluctuations which must be eliminated inside the habitat,” Smalyukh said. “We see our aerogel product as a prime way to accomplish this, additionally allowing for the harvesting and storage of solar energy inside of habitats because these aerogels are transparent to sunlight. Because our aerogel can be made from waste, space colonizers wouldn’t necessarily have to bring the aerogel with them from Earth, which would be expensive. Instead, they could grow, from waste, [and] with the help of bacteria, aerogels to be used in habitats.”

At present, the researchers have demonstrated the aerogel at a proof-of-concept level; creating 6.5-inch aerogels with proven transparency, durability, and insulating characteristics. Next, they plan to come up with a means to scale manufacturing in a way that will make the technology affordable to all.

A paper describing the research was recently published in the journal Nano Energy.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Map of Mars shows the location of ice beneath the planet’s surface
In this artist’s concept, NASA astronauts drill into the Martian subsurface. The agency has created new maps that show where ice is most likely to be easily accessible to future astronauts.

One of the challenges of sending human explorers to Mars is that, due to the logistics of the journey, they will have to be on the planet's surface for considerably longer than the missions of a few days which have been sent to the moon in the past. That means future explorers will need access to resources like food, water, and oxygen -- and rather than having to carry months' worth of supplies through space, it's far more efficient to find ways to produce those resources on Mars itself.

That's the idea behind searching for water ice deposits on Mars. There's plenty of ice on the surface around the planet's poles, but most mission concepts are more focused on the planet's equatorial region. The good news is that there is ice present in these areas too, but the bad news is that it's primarily located below the surface and is thus hard to locate.

Read more
Mars flyover video shows a stunning network of valleys
mars flyover video shows a stunning network of valleys esa

The European Space Agency (ESA) has released a gorgeous video visualizing part of Mars’ Noctis Labyrinthus, a vast system of deep valleys that stretches for around 740 miles (1,190 kilometers), or for context, roughly equal to the length of Italy.

The flyover, which uses imagery gathered from eight orbits made by ESA’s Mars Express spacecraft and its High Resolution Stereo Camera (HSRC), shows a landscape dramatically different to other parts of Mars such as the much flatter Jezero Crater, which NASA's Perseverance rover is currently exploring for signs of ancient microbial life.

Read more
Perseverance rover catches footage of a dust devil on Mars
mars 2020 perseverance rover

Many of the weather events we experience here on Earth can be found on other planets too, and that includes whirlwinds. Several missions have observed small whirlwinds called dust devils on Mars, and the Perseverance rover recently captured footage of one such dust devil in action as it rolled across the martian surface.

The footage was captured by one of Perseverance's black-and-white navigation cameras, called Navcams, and shows a dust devil moving at a speed of around 12 mph across a regions known as the Thorofare Ridge. You can clearly see the dust devil as a white column moving across the top of the ridge in an animation posted by NASA's Jet Propulsion Laboratory, which manages the rover.

Read more