Skip to main content

Origami-inspired artificial muscles can lift 1,000 times their body weight

Origami-Inspired Artificial Muscles
Robots just got a boost in strength thanks to researchers at Harvard’s Wyss Institute and MIT’s Computer Science and Artificial Intelligence Laboratory, who have developed artificial muscles capable of lifting up to 1,000 times their own weight. Despite that super strength, the soft robots are relatively simple creatures, made up of metal and plastic “skeletons” surrounded by air or liquid, and encased in a plastic or textile outer “skin.”

Over the past few decades, soft robotics have made significant advancements in flexibility, allowing them to mimic the movement of biological muscles through the use of actuators. As with a human hand, this physical flexibility allows them to adapt and perform a range of tasks.

However, this dexterity tends to come at the cost of strength, since softer and more flexible materials are often used. In the new design, air or water pressure gives the actuators added strength that otherwise couldn’t be achieved through the materials themselves.

“Artificial muscle-like actuators are one of the most important grand challenges in all of engineering,” Rob Wood, a professor of engineering at Harvard and one of the authors of a paper published this week in the journal PNAS, said in a statement. “Now that we have created actuators with properties similar to natural muscle, we can imagine building almost any robot for almost any task.”

If the soft robots’ strength sounds extraordinary, that’s because it is. In fact, it was a shock even to its creators.

“We were very surprised by how strong the actuators […] were. We expected they’d have a higher maximum functional weight than ordinary soft robots, but we didn’t expect a thousand-fold increase. It’s like giving these robots superpowers,” said Daniela Rus, a professor of engineering and computer science at MIT and one of the authors of the paper.

Inspired by origami, the robots’ design allows them to fold into programmable patterns to save space. Twist them in a certain way and they’ll fold together neatly. Useful as that may be for keeping things packed and orderly, it does create a drawback in that they’re not as easily controlled as conventional robots, since their movements depend on their skeleton, which cannot be adjusted.

Still, the researchers don’t consider this to be all that limiting. By physically designing the robots to move in certain ways, the algorithms required to control them can be simplified. And since the robots are made up of such simple materials, the researchers say one of the actuators can be built in ten minutes for less than a dollar.

Moving forward Rus and her team want to develop even more complex structures, including an artificial elephant trunk that can move and grip just like the real thing.

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
The best portable power stations
EcoFlow DELTA 2 on table at campsite for quick charging.

Affordable and efficient portable power is a necessity these days, keeping our electronic devices operational while on the go. But there are literally dozens of options to choose from, making it abundantly difficult to decide which mobile charging solution is best for you. We've sorted through countless portable power options and came up with six of the best portable power stations to keep your smartphones, tablets, laptops, and other gadgets functioning while living off the grid.
The best overall: Jackery Explorer 1000

Jackery has been a mainstay in the portable power market for several years, and today, the company continues to set the standard. With three AC outlets, two USB-A, and two USB-C plugs, you'll have plenty of options for keeping your gadgets charged.

Read more
CES 2023: HD Hyundai’s Avikus is an A.I. for autonomous boat and marine navigation
Demonstration of NeuBoat level 2 autonomous navigation system at the Fort Lauderdale International Boat Show

This content was produced in partnership with HD Hyundai.
Autonomous vehicle navigation technology is certainly nothing new and has been in the works for the better part of a decade at this point. But one of the most common forms we see and hear about is the type used to control steering in road-based vehicles. That's not the only place where technology can make a huge difference. Autonomous driving systems can offer incredible benefits to boats and marine vehicles, too, which is precisely why HD Hyundai has unveiled its Avikus AI technology -- for marine and watercraft vehicles.

More recently, HD Hyundai participated in the Fort Lauderdale International Boat Show, to demo its NeuBoat level 2 autonomous navigation system for recreational boats. The name mashes together the words "neuron" and "boat" and is quite fitting since the Avikus' A.I. navigation tech is a core component of the solution, it will handle self-recognition, real-time decisions, and controls when on the water. Of course, there are a lot of things happening behind the scenes with HD Hyundai's autonomous navigation solution, which we'll dive into below -- HD Hyundai will also be introducing more about the tech at CES 2023.

Read more
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more