Skip to main content

Japanese researchers use deep learning A.I. to get driftwood robots moving

walk

Did you ever make sculptures out of found objects like driftwood? Researchers at the University of Tokyo have taken this same idea and applied it to robots. In doing so, they’ve figured out a way to take everyday natural objects like pieces of wood and get deep reinforcement learning algorithms to figure out how to make them move. Using just a few basic servos, they’ve opened up a whole new way of building robots — and it’s pretty darn awesome.

Recommended Videos

“[In our work, we wanted to] consider the use of found objects in robotics,” the researchers write in a paper describing their work. “Here, these are branches of various shapes. Such objects have been used in art or architecture, but [are] not normally considered as robotic materials. [However,] when the robot is trained towards the goal of efficient locomotion, these parts adopt new meaning: hopping legs, dragging arms, spinning hips, or yet unnamed creative mechanisms of propulsion. Importantly, these learned strategies, and thus the meanings we might assign to such found object parts, are a product of optimization and not known prior to learning.”

Azumi Maekawa/University of Tokyo

Deep reinforcement learning is useful for applications where the A.I. needs to figure out strategies for itself through trial and error. Famously, this approach to artificial intelligence was used to develop DeepMind’s A.I., which learned to play classic Atari games using just the game’s on-screen data and knowledge of its controls. In this latest driftwood example, the robot figures out the optimal way to bring its wooden limbs to virtual life by using reinforcement learning technology to test out different types of locomotion. The result involves movements that don’t necessarily replicate real-life animal movements (to be fair, there aren’t a whole lot of stick-like living creatures to model movement on!), but that are nonetheless efficient.

Please enable Javascript to view this content

In a masterstroke, the researchers arranged for this training to be done in simulation. Among other things, this allows for a large number of failed movement attempts without having to worry about destroying the physical robot in the process. In order to carry out these simulations accurately, though, the researchers first have to 3D scan in the sticks and enter their respective weights so that the gaits can be calculated correctly.

While it’s likely that roboticists will continue to build many robots from the ground up, this is still a great reminder that, with the right software, literally anything can be a robot — even a pile of sticks.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Deep-learning A.I. is helping archaeologists translate ancient tablets
DeepScribe project 1

 

Deep-learning artificial intelligence is helping grapple with plenty of problems in the modern world. But it also has its part to play in helping solve some ancient problems as well -- such as assisting in the translation of 2,500-year-old clay tablet documents from Persia's Achaemenid Empire.

Read more
Hyundai Ioniq 5 sets world record for greatest altitude change
hyundai ioniq 5 world record altitude change mk02 detail kv

When the Guinness World Records (GWR) book was launched in 1955, the idea was to compile facts and figures that could finally settle often endless arguments in the U.K.’s many pubs.

It quickly evolved into a yearly compilation of world records, big and small, including last year's largest grilled cheese sandwich in the world.

Read more
Global EV sales expected to rise 30% in 2025, S&P Global says
ev sales up 30 percent 2025 byd sealion 7 1stbanner l

While trade wars, tariffs, and wavering subsidies are very much in the cards for the auto industry in 2025, global sales of electric vehicles (EVs) are still expected to rise substantially next year, according to S&P Global Mobility.

"2025 is shaping up to be ultra-challenging for the auto industry, as key regional demand factors limit demand potential and the new U.S. administration adds fresh uncertainty from day one," says Colin Couchman, executive director of global light vehicle forecasting for S&P Global Mobility.

Read more