Skip to main content

Harvard researchers have created a swarm of learning robots

Totally ignoring Asimov’s laws of robotics, a team of computer scientists at Harvard University have crafted a swarm of over one thousand diabolical robots, programmed only for evil. Despite the fact that each of the Kilobots is only about the size of a quarter, their great numbers and advanced coordination allows them to operate without any human interaction, save for issuing the initial command. Once they’ve been given the word, these robots won’t stop until they’ve carried out their inventors’ sinister plans to draw complex shapes on a flat surface.

Computer science is often inspired by the natural world, and the Kilobot swarm is no different, taking cues from ants and micro-organisms that achieve complex goals by working as a large system following a simple set of orders. Each robot on its own is simple and prone to failure, a weakness humans will have to exploit before the tiny robots can join together into a group, where they’re most effective.

Recommended Videos

Kilobot-CloseupWheels and other traditional motor mechanisms are surprisingly difficult to replicate cheaply and effectively on a scale that large, so instead each Kilobot stands on three rigid legs, and is able to move straight ahead, as well as rotating clockwise and counterclockwise, by vibrating a small servo at different frequencies. Despite their individual shortcomings, the algorithm that pulls them together allows the system to function at a much higher level than any of its individual parts, allowing these simple robots to carry out a range of tasks including identifying their location in a larger group, shifting towards ambient light, and possibly learning to stage a geopolitical coup.

By communicating through infrared connections, the Kilobots are able to send location information and simple commands to each other, which may be related to plotting the fall of humanity, or the shape that the swarm is currently attempting to form. The control board is able to send messages to the entire swarm at once, programming them all for action in under 40 seconds. From that point on the Kilobots talk to their neighbors and form the desired shape around a few coordinating robots, navigating traffic jams, edges of the shape, and any robots that have wandered off from the group and gotten lost.

While their work may not seem particularly exciting right now, there are a lot of important lessons to be learned from coordinating robots in such large numbers. While most of these projects involve anywhere from 10 to 100 Kilobots, this most recent round tested to see how well 1024 of the low-cost robots could form simple shapes, such as the letter ‘K,’ a wrench, and a starfish. The real-world applications of this aren’t evident right away, but could encourage the use of robotics in areas that were believed to be most effectively completed by humans until now.The simple commands that the Kilobots use to disperse, follow each other, and communicate important locations could guide much more complex robots in much more complex operations.

Kilobot-ControllerThe idea behind experimenting with communication between the Kilobots isn’t just an exercise in computing; it’s a step towards developing new systems of robotics where many smaller parts act as part of a single, cohesive system. The lessons learned from the Kilobot swarm could lead to robots that rebuild broken sections of buildings or other machines automatically, find lost people in developing or disaster-stricken locations, or form a sentient system of computers that start a nuclear war after deciding that all of humanity is a threat to its existence. Whatever happens though, we’re excited to see what this exciting advance in robotics turns into.

[Images courtesy of the Harvard School of Engineering and Applied Sciences]

Brad Bourque
Former Digital Trends Contributor
Brad Bourque is a native Portlander, devout nerd, and craft beer enthusiast. He studied creative writing at Willamette…
ChatGPT’s awesome Deep Research gets a light version and goes free for all
Deep Research option for ChatGPT.

There’s a lot of AI hype floating around, and it seems every brand wants to cram it into their products. But there are a few remarkably useful tools, as well, though they are pretty expensive. ChatGPT’s Deep Research is one such feature, and it seems OpenAI is finally feeling a bit generous about it. 

The company has created a lightweight version of Deep Research that is powered by its new o4-mini language model. OpenAI says this variant is “more cost-efficient while preserving high quality.” More importantly, it is available to use for free without any subscription caveat. 

Read more
Star Wars legend Ian McDiarmid gets questions about the Emperor’s sex life
Ian McDiarmid as the Emperor in Star Wars: The Rise of Skywalker.

This weekend, the Star Wars: Revenge of the Sith 20th anniversary re-release had a much stronger performance than expected with $25 million and a second-place finish behind Sinners. Revenge of the Sith was the culmination of plans by Chancellor Palpatine (Ian McDiarmid) that led to the fall of the Jedi and his own ascension to emperor. Because McDiarmid's Emperor died in his first appearance -- 1983's Return of the Jedi -- Revenge of the Sith was supposed to be his live-action swan song. However, Palpatine's return in Star Wars: Episode IX -- The Rise of Skywalker left McDiarmid being asked questions about his character's comeback, particularly about his sex life and how he could have a granddaughter.

While speaking with Variety, McDiarmid noted that fans have asked him "slightly embarrassing questions" about Palpatine including "'Does this evil monster ever have sex?'"

Read more
Waymo and Toyota explore personally owned self-driving cars
Front three quarter view of the 2023 Toyota bZ4X.

Waymo and Toyota have announced they’re exploring a strategic collaboration—and one of the most exciting possibilities on the table is bringing fully-automated driving technology to personally owned vehicles.
Alphabet-owned Waymo has made its name with its robotaxi service, the only one currently operating in the U.S. Its vehicles, including Jaguars and Hyundai Ioniq 5s, have logged tens of millions of autonomous miles on the streets of San Francisco, Los Angeles, Phoenix, and Austin.
But shifting to personally owned self-driving cars is a much more complex challenge.
While safety regulations are expected to loosen under the Trump administration, the National Highway Traffic Safety Administration (NHTSA) has so far taken a cautious approach to the deployment of fully autonomous vehicles. General Motors-backed Cruise robotaxi was forced to suspend operations in 2023 following a fatal collision.
While the partnership with Toyota is still in the early stages, Waymo says it will initially study how to merge its autonomous systems with the Japanese automaker’s consumer vehicle platforms.
In a recent call with analysts, Alphabet CEO Sundar Pichai signaled that Waymo is seriously considering expanding beyond ride-hailing fleets and into personal ownership. While nothing is confirmed, the partnership with Toyota adds credibility—and manufacturing muscle—to that vision.
Toyota brings decades of safety innovation to the table, including its widely adopted Toyota Safety Sense technology. Through its software division, Woven by Toyota, the company is also pushing into next-generation vehicle platforms. With Waymo, Toyota is now also looking at how automation can evolve beyond assisted driving and into full autonomy for individual drivers.
This move also turns up the heat on Tesla, which has long promised fully self-driving vehicles for consumers. While Tesla continues to refine its Full Self-Driving (FSD) software, it remains supervised and hasn’t yet delivered on full autonomy. CEO Elon Musk is promising to launch some of its first robotaxis in Austin in June.
When it comes to self-driving cars, Waymo and Tesla are taking very different roads. Tesla aims to deliver affordability and scale with its camera, AI-based software. Waymo, by contrast, uses a more expensive technology relying on pre-mapped roads, sensors, cameras, radar and lidar (a laser-light radar), that regulators have been quicker to trust.

Read more