Skip to main content

New images reveal more about the history of water on Mars

This image from ESA’s Mars Express shows a dried-up river valley on Mars named Nirgal Vallis. This oblique perspective view was generated using a digital terrain model and Mars Express data gathered on November 16, 2018, during Mars Express orbit 18818. ESA/DLR/FU Berlin

Two new sets of images from NASA and the European Space Agency (ESA) have revealed more about the history of water on Mars. Scientists believe that billions of years ago, Mars had a thick, dense atmosphere that trapped heat and allowed liquid water to exist on the surface. They want to learn more about this period to see if there is any way that liquid water might still exist on the planet today.

Above is an image that was taken by the ESA’s Mars Express, a spacecraft in orbit around the planet that has captured a dried-up river system called Nirgal Vallis located just south of the equator. The river system stretches for nearly 700 kilometers (435 miles) and was shaped both by the flow of water through the rock and by impacts when meteorites hit the surface. You can see the tree-like branching caused by the river’s flow as well as the round craters caused by the impacts. The system is believed to be between 3.5 and 4 billion years old.

The network of cracks in this Martian rock slab called “Old Soaker” may have formed from the drying of a mud layer more than 3 billion years ago. The view spans about 3 feet (90 centimeters) left-to-right and combines three images taken by the MAHLI camera on the arm of NASA’s Curiosity Mars rover. NASA/JPL-Caltech/MSSS

Around the same time, 3.5 billion years ago, the surface of the Gale Crater was very different too. This crater, also located near the equator, is where the Curiosity rover is currently exploring. The rover has captured this image of a network of cracks in the ground, suggesting there was once mud in this location which cracked as it dried. This provides further evidence that there were once lakes in this area.

Located within the Gale Crater is the massive Mount Sharp, which Curiosity is slowly climbing. The steep sides of the mountain allow scientists to view different layers of bedrock, learning about the Martian environment over time. The rover is currently in an area called the “clay-bearing unit” because of the presence of clay minerals there, but it will soon be moving on to the “sulfate-bearing unit.” There appear to be different layers in this new area, which could have formed in drier conditions which came later in Mars’ history.

In the next few years, Curiosity will make its way through the sulfate-bearing unit to investigate these layers up close, with the hopes of understanding how they fit into the environmental history of Mars.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Five new images from Chandra reveal cosmic objects in X-ray wavelength
Galactic Center X-ray

A series of five new images from NASA's Chandra X-ray Observatory show the beauty of space as seen in the X-ray wavelength. Data from Chandra has been combined with data from other telescopes operating in the visible light and infrared wavelengths to show some of the unique features of the high-energy universe.

The images show a range of objects from the heart of the Milky Way to supernova remnants, each one combining different sets of data to create a stunning view of an object that couldn't be perceived in this way by human eyes.

Read more
NASA reveals new date for Crew-7 mission to space station
The International Space Station pictured from the SpaceX Crew Dragon Endeavour during a fly-around of the orbiting lab.

The four crew members of NASA’s SpaceX Crew-7 mission inside SpaceX Hangar X at NASA’s Kennedy Space Center. From left to right: Konstantin Borisov, Andreas Mogensen, Jasmin Moghbeli, and Satoshi Furukawa. SpaceX

UPDATE: NASA had moved the targeted launch date from August 17 to August 21. But it's now targeting Friday, August 25. This article has been updated to reflect the change.

Read more
See seasonal changes on Mars in two stunning images from MAVEN
mars maven ultraviolet seasons orbit16863 apo ladfit localff png

The planets in our solar system experience seasons because of the way that they are tilted in their orbits, so one hemisphere is facing the sun more often at some times of year than others. However, there's another factor which also affects weather and conditions on some planets, which is their position in their orbit around the sun. Earth has a relatively circular orbit, so the differences caused by it being slightly closer or further from the sun at different points are minimal. But Mars's orbit is much more eccentric or oval-shaped than Earth's, meaning conditions differ based on when the planet is closer to the sun.

That effect is illustrated in two images of Mars recently released by NASA, which show the planet at its closest and furthest point from the sun. Taken by a Mars orbiter called MAVEN, or Mars Atmosphere and Volatile EvolutioN, the images were taken six months apart in July 2022 and January 2023 respectively, showing how the environment of the planet changes with both season and the planet's orbit.

Read more