Skip to main content

Newly-developed ink makes it possible to print stretchy circuits onto fabrics

new ink can print stretchy circuits on fabric screen shot 2015 06 29 at 2 18 44 pm
Image used with permission by copyright holder
Stretchy electronics are on a roll lately. Last week we ran a story on a new flexible conductor developed by researchers at the North Carolina State University, and now, in yet another exciting development, researchers from the University of Tokyo have developed a technology that could turn clothes and textiles into flexible, comfortable electronics.

Rather than creating a new material altogether, the researchers developed a metallic ink that can be printed onto the surface of textiles to create flexible electronics or conductors. A press release by the university mentions that once the ink is printed to the surface of a textile, it doesn’t lose its conductivity — even when stretched to more than three times its original length. The researchers believe that the technology could be used in the development of flexible sensors, which could then be integrated into clothing and sportswear, paving the way for comfortable wearable electronics.

Recommended Videos

It might not sound particularly complicated at first, but developing stretchable electronics is a complicated endeavor. The problem is that, when you’re working with conductive materials, there’s trade-off between their mechanical and electrical characteristics. When you increase the conductive filler (aka, metals) in the material to achieve higher electrical conductivity, it also increases the stiffness of the material, which thereby diminishes the stretchability of it, and limits its potential applications.

But the University of Tokyo team has figured out a solution. To develop this ink, the researchers put together a mixture of silver flakes, organic solvent, fluorine rubber, and fluorine surfactant. The resulting ink can be applied to the surface of a textile, similar to how an office printer deposits ink onto a piece of paper.

Creating a flexible conductor with this solution requires just one step – printing the ink onto the surface of the textile. Once the ink has been applied to the surface of a textile, the silver flakes automatically assemble themselves, and cause material to become highly conductive.

In order to demonstrate the effectiveness of this approach, the researchers used their ink to print a muscle activity sensor onto a stretchable cloth. While the electrodes were printed on both sides of the material, the wiring was printed only on the external side. When it was all said and done, the wrist-borne muscle activity sensor printed from this method was able to measure the electrical potential of the muscle beneath it over an area of 2.5 square inches.

The researchers believe that their technique will make wearable devices more comfortable and widespread. If that works out, pretty soon all these clunky wristbands, clips, and patches will seem archaic.

John Camdir
Former Digital Trends Contributor
John is fascinated with technologies that deals with health and the advancement of human capabilities. He is a bionics…
Honda doubles down on ‘holy grail’ of EV batteries
honda solid state battery production first electric suv 3

While some automakers are scaling back their production of electric vehicles, Honda is basking in the glow of a successful launch of its Prologue EV in the U.S., and was recently dubbed “North America’s most committed automaker.”

And now, Japan’s third-largest automaker is showing a similar commitment to making EVs more efficient and affordable, zeroing in on the production of its own in-house solid-state batteries, also known as the ‘holy grail’ of EV batteries.

Read more
Hyundai’s brand new Ioniq 9 EV features backseat lounge
hyundai ioniq 9 lounge 4 single image desktop

After months of teasing details about the Ioniq 9, Hyundai’s much-anticipated, three-row electric SUV, the company finally unveiled it at the Los Angeles Auto Show.

One of the Ioniq 9’s promised features -- that the SUV had the ability to offer a lounge-like interior – had most of us wondering what exactly that might mean.

Read more
Kia America COO says ending EV tax credit would be dumb
kia coo ending ev incentive dumb zeta evs

With Kia just getting started with the expansion of its U.S.-made electric-vehicle (EV) lineup, the automaker may have a good perspective on what losing tax incentives on EVs could mean for the industry and the economy.

The transition team of the incoming Trump administration is reportedly planning to end the federal $7,500 tax credit on the purchase or lease of an EV. Under the Biden administration’s Inflation Reduction Act (IRA), an EV made in North America is eligible for the incentive.

Read more