Skip to main content

Science says waste beer could help us live on Mars

From beer to windows

Any project that starts with beer and ends with colonizing Mars has our attention. At its highest level, that describes new research coming out of the University of Colorado at Boulder — where scientists have developed a new super-insulating gel, created from beer waste, which could one day prove useful for building greenhouse-like habitats for Mars colonists.

Recommended Videos

“The Smalyukh Research Group at the University of Colorado Boulder has developed a super-insulating, ultra-light, and ultra-transparent aerogel film,” Ivan Smalyukh, a professor in the Department of Physics, told Digital Trends. “Aerogels are extremely porous solid objects that are made mostly from air, and are about 100 times less dense than glass panes. Our aerogel is made from nanocellulose, which is grown by bacteria that eat waste beer wort, a waste byproduct of the beer industry.”

The cellulose enables the researchers’ aerogel to be very flexible and durable. It can be produced very cheaply, and means the team can precisely control the individual size of particles which make up its solid structure. This lets the material allow light to pass through it without significant scattering.

“Our immediate real world use-case is to use our aerogel product to dramatically increase the efficiency of windows in homes and commercial buildings,” Andrew Hess, another researcher on the project, told us. “Replacing inefficient windows is a costly and difficult endeavor, especially for buildings with structural or historical constraints. We aim to commercialize a peel-and-stick retrofitting aerogel film for windows which will effectively turn single-pane into double-pane windows — all at an affordable cost well below that of replacing the windows.”

However, the team also has more far-flung ambitions for their research. The project was recently named one of the winners of NASA’s 2018 iTech competition, which aims to reward technologies that could one day be used to help people travel to space.

“Extraterrestrial habitats will face extreme temperature fluctuations which must be eliminated inside the habitat,” Smalyukh said. “We see our aerogel product as a prime way to accomplish this, additionally allowing for the harvesting and storage of solar energy inside of habitats because these aerogels are transparent to sunlight. Because our aerogel can be made from waste, space colonizers wouldn’t necessarily have to bring the aerogel with them from Earth, which would be expensive. Instead, they could grow, from waste, [and] with the help of bacteria, aerogels to be used in habitats.”

At present, the researchers have demonstrated the aerogel at a proof-of-concept level; creating 6.5-inch aerogels with proven transparency, durability, and insulating characteristics. Next, they plan to come up with a means to scale manufacturing in a way that will make the technology affordable to all.

A paper describing the research was recently published in the journal Nano Energy.

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
NASA learns how the Ingenuity helicopter ended up crashing on Mars
NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, 2024, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (at left in image).

Earlier this year, the NASA helicopter Ingenuity came to the end of its mission after an incredible 72 flights on Mars. The helicopter flew a remarkable 30 times farther than planned, and was the first rotocopter to fly on another planet, proving that exploring distant worlds from the air is possible. Now, NASA has revealed new details about what exactly caused the crash that brought the mission to an end, and what it learned about flying helicopters for future missions.

The final flight of Ingenuity took place on January 18, 2024, when the helicopter rose briefly into the air in a maneuver called a hop. The helicopter was fitted with a number of cameras, and shadows cast onto the planet's surface revealed that one of the helicopter's rotor blades was missing, having apparently separated at the mast. But it wasn't certain what had caused this damage.

Read more
Take a flight over Mars’ Ares Vallis in a new video from Mars Express
mars ares vallis flyover screenshot 2024 11 30 234209

A new video shows what it would be like to cruise over the surface of Mars, zooming in to the planet from orbit and into a channel called the Ares Vallis. Created from data taken by the European Space Agency's (ESA) Mars Express mission, it shows the region where NASA's Pathfinder mission landed in 1997.

Credit: ESA/DLR/FU Berlin and NASA/JPL-Caltech/MSSS. Data processing/animation: Björn Schreiner, Image Processing Group (FU Berlin)

Read more
Check out this incredible panorama of Mars taken by Curiosity
NASA’s Curiosity captured this panorama using its Mastcam while heading west away from Gediz Vallis channel on Nov. 2, 2024, the 4,352nd Martian day, or sol, of the mission. The Mars rover’s tracks across the rocky terrain are visible at right.

The Curiosity rover has been on Mars since 2012, and in that time it has driven more than 20 miles -- which might not sound like a lot, but is a long distance for a rover traveling at slow, careful speeds that are somewhat less than the average garden snail. The rover has now reached the end of an area it has been exploring for the past year -- a channel called Gediz Vallis -- but before it moved on, the rover snapped a series of images of the area, which you can explore in this NASA panorama:

Key features are marked on the panorama, including the route along which the rover will exit the channel, as well as the tracks that lead back to show the direction the rover came in. In the far distance you can see the rim of the Gale Crater, which is the larger area that Curiosity is exploring, and the Pinnacle Ridge, which is formed from a mound of debris that scientists are still studying.

Read more